
Components and Operation of the ROTSE-III Telescope System

Eli Rykoff
University of Michigan

Don Smith
University of Michigan

May 20, 2003

2

Contents

1 ROTSE-III Data Acquisition System 9
1.1 Introduction . 9
1.2 The Daemons . 9

2 How To Run the ROTSE-III System 15
2.1 Introduction . 15
2.2 System Files . 15
2.3 Starting the System . 15
2.4 Shutting Down the ROTSE System . 16
2.5 The Rotse User Shell: rush . 16
2.6 True Realtime Status Monitoring with rmonitor . 21

3 The ROTSE-III Configuration Files 25
3.1 General Configuration File Information . 25
3.2 rotsed.conf . 26
3.3 alertd.conf . 27
3.4 astrod.conf . 28
3.5 camerad.conf . 28
3.6 camserverd.conf . 30
3.7 clamd.conf . 31
3.8 schierd.conf . 31
3.9 spotd.conf . 33
3.10 userd.conf . 34
3.11 weathd.conf . 34

4 Rotse-III Scheduling 37
4.1 Introduction . 37
4.2 astrod and rotsed . 37
4.3 astrod.conf . 38
4.4 Triggers and Schedules . 40
4.5 burst.conf . 43
4.6 Guest User Schedule Submission . 44

5 Polar Alignment and Pointing Models 47
5.1 Introduction . 47
5.2 Polar Alignment . 47
5.3 Using Tpoint . 50
5.4 Refining the Pointing Model . 51
5.5 Tpoint Formulas . 52

3

4 CONTENTS

6 Building A Better Focus Model 55
6.1 Introduction . 55
6.2 The Focus Model . 55
6.3 Manually Monitoring the Focus Gradient . 56
6.4 Setting Up an Automated Focus Run . 57
6.5 Constructing a Focus Model . 57

7 Image Correction and Calibration Images 61
7.1 Introduction . 61
7.2 Dark Images . 61
7.3 Flat Fields . 62
7.4 Updating the Automated Pipeline Files . 67
7.5 Performing Image Correction: corr im fast and new dfc . 68
7.6 Uncorrecting Images: uncorrect . 69

8 Realtime Data Analysis and Monitoring Telescope Operations 71
8.1 Introduction . 71
8.2 Realtime Automated Analysis . 71
8.3 Manual Data Analysis . 76
8.4 Operational Status and Monitoring . 78

9 Troubleshooting 83
9.1 Introduction . 83
9.2 Tips and Tricks . 83
9.3 Help! The system won’t start! . 84
9.4 Help! The camera isn’t working right! . 85
9.5 Help! The mount is having “issues”! . 86

A ROTSE-III File Naming Conventions 87
A.1 Three-Letter Acronyms (TLA) . 87
A.2 Coordinates or ID Numbers . 87
A.3 Instrument Designation and Index Number . 87
A.4 Optional Modifiers . 88
A.5 Match Structures . 89
A.6 Standard Data Directory Structure . 89

B FITS File Information 91
B.1 FITS File Description . 91
B.2 Accessing FITS Files: Command Line . 91
B.3 Accessing FITS Files: IDL . 92
B.4 Accessing FITS Files: C . 93

C ROTSE-III Data Products 95
C.1 Raw Images . 95
C.2 Corrected Images . 96
C.3 sobj Files . 96
C.4 cobj Files . 97
C.5 Match Structures . 98
C.6 Relative Photometry-Corrected Match Structures . 100

List of Figures

1.1 ROTSE-III Daq Diagram . 10

2.1 rmonitor Screenshot . 22

6.1 FWHM vs. Focus Position . 56
6.2 Focus Model Residuals . 59

7.1 Twilight Flat . 63
7.2 Sky Flat . 65
7.3 Fringe Map . 66
7.4 Fringe Fit . 67

8.1 Analysis Pipeline . 73
8.2 Example of an image thumbnail . 74
8.3 Example of an analysis status display image . 75
8.4 WWW Status Display . 80

5

6 LIST OF FIGURES

List of Tables

2.1 rush Commands . 18

4.1 astrod.conf Triggers . 42

8.1 Bitmasks for the ROTSE-III sites. 81
8.2 Bitmasks for status to check. 81
8.3 Bitmasks for the types of ROTSE-III alerts. 81

A.1 Explanation of TLAs . 88
A.2 Optional file modifiers for ROTSE-III data products. 88
A.3 System File Locations . 89
A.4 Data File Locations . 89
A.5 Contents of Pipeline Directory . 90

C.1 SExtractor Flags . 97
C.2 ROTSE Calibration Flags . 98
C.3 Match Structure Field Definitions . 99

7

8 LIST OF TABLES

Chapter 1

ROTSE-III Data Acquisition System

1.1 Introduction

The ROTSE-III data acquisition system (“daq” system) runs on Linux RedHat 6.2. It is comprised of a
set of daemons that communicate via shared memory. The central “rotse daemon” (rotsed) handles the
communication between the various daemons. The peripheral daemons each interface with a different piece of
the hardware.

The control system has two modes, automatic and manual. The default mode is auto mode, where all
the commands are issued by the astrod scheduler daemon (see Section 1.2.8). In manual mode, commands
come from the Rotse User Shell (rush) via the userd daemon (see Section 1.2.9). rush is a light, telnet
compatible shell based on rc that provides flexible access even from limited internet connections. In addition,
the rmonitor program is a nice way to monitor status in realtime, described in Section 2.6.

1.2 The Daemons

1.2.1 The ROTSE Daemon: rotsed

The ROTSE Daemon (rotsed) is the central nervous system of the ROTSE daq system, as shown in Fig-
ure 1.1. rotsed controls system startup and shutdown and handles interdaemon communication. It also
handles emergency responses to bad weather and outputs system status for the web based status monitor (See
Section 8.4.2).

The ROTSE IPCS shared memory structure is divided into several structures, one for each daemon.
Each daemon has a status structure used to report status to rotsed, and a command structure, to receive
commands from rotsed. On each loop, rotsed reads the status of each daemon to ensure that they are all
running smoothly. If a daemon has not updated its timestamp recently, rotsed shuts down the system. If
a status structure from one daemon contains information for another daemon, rotsed copies the relevant
information to the command structure of the destination daemon.

When the weather turns bad, rotsed is responsible for issuing an immediate command to close the
clamshell. It must be noted that the weather monitor daemon, weathd, must be turned on in order for
this to work.

While shared memory commands are used to communicate between two daemons at a time, Linux system
signals are used to communicate with all the daemons at once. There are several signals used by rotsed and
the daq system:

• SIG TERM: The termination signal (15)1 is used to tell a ROTSE daemon to shutdown cleanly. Usual
system shutdown is accomplished by issuing a SIG TERM to rotsed, which passes on the signal to the
other daemons.

1This is the Linux standard signal number associated with a TERM signal.

9

10 CHAPTER 1. ROTSE-III DATA ACQUISITION SYSTEM

rotsed

userd

clamd

spotd

astrod

alertd*

weathd*

schierd camerad

rush

Clamshell

Camera
Computer

Mount
Computer

Weather
Station

GCN

Watchdog
Module

Figure 1.1: The ROTSE-III Data Aquisition system is made up of a number of interconnected daemons which
communicate through the central rotsed. Each daemon interfaces with a different logically distinct aspect of
the telescope system. The daemons with asterisks are also able to send Linux signals to interrupt the camera,
mount, and scheduler.

• SIG ROTSE: The ROTSE signal (equivalent to interrupt (2)) is used to tell all the ROTSE daemons to
stop what they are doing and wait for further commands. The camera will abort an exposure, the
mount will stop slewing, and the scheduler will interrupt its current programming for this important
announcement. This signal is used when a burst alert is received by alertd, or when the weather turns
bad in weathd.

• SIG HUP: The hangup signal (1) is used to tell the astrod scheduler to re-read its configuration file and
reset the schedule, as described in Section 4.1. The other daemons ignore this signal.

• SIG KILL: When all else fails, a KILL signal (9) can be used to terminate a daemon with extreme
prejudice. A daemon killed in this way might not exit cleanly.

When the weather turns bad, weathd signals a weather alarm in the shared memory status, and sends
out a SIG ROTSE to interrupt the other daemons. When rotsed receives a SIG ROTSE in conjunction with the
weather alarm, it directs clamd to close the clamshell.

1.2.2 The Clamshell Daemon: clamd

The Clamshell Daemon (clamd) interfaces with the i/o box controller clamshell lines. It can issue commands
to open or close the clamshell, and can query the clamshell limit switches to determine if the clamshell is open,
closed or in transition. If a limit switch opens or closes unexpectedly, clamd will try to issue a close command
and will shut down the system.

One should note that operating the clamshell with the manual external switch is incompatible with the
normal operation of the daq system. If the system (specifically spotd, described in Section 1.2.3) is not
running, then the watchdog module will not allow the clamshell to be opened. If spotd is running, any

1.2. THE DAEMONS 11

unexpected change in the clamshell status caused by opening limit switches will log a fatal error, and the
system will shut down. The external clamshell switch only is useful in early set-up stages of the telescope.

1.2.3 The Spot Daemon: spotd

The Spot Daemon (spotd) pings the watchdog module in the i/o box every second. If the watchdog module
fails to receive a ping after five seconds, the clamshell is automatically closed via a hardware switch. Hence,
in the unfortunate event of an unexpected shutdown of the daq system (eg, due to software failure or power
failure), the clamshell will close itself.

1.2.4 The Camera Daemon: camerad and camserverd

The Camera Daemon (camerad) handles communication with the CCD camera computer. Connection is
provided by a TCP/IP socket connection over a private LAN network configured on the eth1 secondary
ethernet card. The camerad acts as the socket client, and the Camera Server Daemon (camserverd) acts
as the server on the camera computer itself. If the socket connection fails and connection cannot quickly be
reestablished, camerad assumes the camera computer has crashed, and the daq system will be shut down.

The camera will accept the following commands:

• PICT EXPOSE: Take an image with the shutter open.

• PICT DARK: Take an image with the shutter closed.

• PICT STATUS: Return the status (expose, dark, readout, temperature, etc.)

• PICT ABORT: Abort the current exposure. [Will this abort during readout?]

camserverd is organized on a ping/pong buffer format. The multi-threaded code can write one image to disk
from one buffer (“ping”), while it reads out another image from the camera to the other buffer (“pong”). The
image is saved in FITS format, with a custom header describing every relevant statistic from the daq system,
including date, time, exposure and weather information, as described in Section C.1. Additionally, the mean
and rms deviation of the bias region and the central subframe are calculated. If the mean value of the central
subframe is too large, eg, when all the pixels are saturated, then only the image header is written to disk. The
bias values are a good indication of the readout noise in the camera. camserverd also creates a symbolic link
to the image which is read in by the automated analysis pipeline program, as described in Chapter 8.

1.2.5 The Schier Mount Daemon: schierd

The Schier Mount Daemon (schierd) handles communication with the mount controller computer. Connection
is provided by a serial line at 9600 baud, with CRC checksums to ensure every command is understood. The
mount controller itself takes simple commands to find its home position, change axis speed, and change target
position. All commands are in absolute encoder steps, and it is the responsibility of schierd to make the
necessary transformations to point at the sky and track at the correct speed and direction. schierd also uses
the outside temperature and the target elevation to apply a simple focus model described in Chapter 6 and
move the focus motor. The connection to the focus motor controller is also via a serial line, at 32000 baud.

schierd is controlled by a stack of commands. For example, upon receipt of a “move” command, three
commands are put on the stack in the following order: track, move, adjust focus. In this way, the focus is
adjusted and the telescope slews (this actually happens in parallel for a faster response time), and then the
mount begins to track on the sky. Only when the mount starts tracking does schierd signal that the move
is complete. schierd is also able to park the mount, find the home position, and move to “standby” position
towards the zenith, which optimizes the response time to a random location on the sky.

12 CHAPTER 1. ROTSE-III DATA ACQUISITION SYSTEM

1.2.6 The Weather Daemon: weathd

The Weather Daemon (weathd) handles communication with the Davis Weather Station and the Vaisala
Precipitation Detector. This multithreaded daemon has both client and server modes, so that one weather
station and/or precipitation detector can be used for a suite of collateral telescopes.

Aside from returning weather statistics such as temperature which are saved in the image header, the most
important task for weathd is to determine when the weather gets “bad.” Any detection of precipitation is
deemed bad. The operator can configure other definitions of bad weather conditions, triggering on windspeed,
dewpoint, humidity or temperature. Upon detection of bad weather, weathd immediate sends out a SIG ROTSE
signal to the entire daq system, and issues a weather alarm for rotsed in its status structure. This causes the
current exposure to abort, the mount to stop slewing or tracking, and the clamshell to close. weathd will wait
for at least one hour to check if the weather has cleared.

1.2.7 The Alert Daemon: alertd

The Alert Daemon (alertd) handles the connection with the Gamma-ray Burst Coordinate Network (GCN)
to receive burst triggers. alertd acts as a TCP/IP socket server on a port number registered with Scott
Bartlemy at Goddard. The port is configurable and site-specific. On start-up, a permanent socket connection
with the GCN is established. Each minute the GCN sends a special IM ALIVE packet. If several minutes pass
without receipt of an IM ALIVE packet, the socket connection is shut down and tries to reestablish itself. In a
separate thread, alertd runs a simulated GCN server. This server listens for a temporary socket connection
on a configurable port, and can be used to test the response of the daq system to GRB triggers. A program
called simalert can be used to mimic GCN packets and establish a socket connection with the daq computer
on this second port.

Upon receipt of a GCN packet (via the real GCN or the simulated GCN), alertd parses the packet to
determine the GRB serial number, time, and position, as well as monitoring flags. If the new packet has the
same type and serial number as the previous packet, it is assumed to be a glitch and is logged and ignored. If
the packet passes this cut, the alert type is then checked against a configurable hash table to determine the
response priority. Simulated alerts are automatically given lower priority than real GCN alerts. If no alert
is currently running, or if the new alert has a higher priority than the current running alert, a SIG ROTSE is
issued and the GRB position is sent to the scheduler for immediate response. It is up to the scheduler to
determine whether the burst is currently visible, and if not, to turn off the alert mode in the daq system.

1.2.8 The Astronomical Scheduler Daemon: astrod

The Astronomical Scheduler Daemon (astrod) schedules observations, system startup and system shutdown.
It consists of a modified queue scheduler that decides in real-time which field is the best field to image
next. Gamma-ray Burst alerts from alertd are automatically put in the front of the queue for immediate
processing. In addition, GRB alerts are logged and further observations of the target coordinates (“follow-up”
observations) are scheduled to be performed at logarithmically increasing time intervals. See Chapter 4 for
information on how to set up the scheduler.

There are four primary types of schedule items that can be configured, listed here in increasing priority:

• “Sky Patrols:” The entire sky is gridded to a pattern, whose spacing depends on the telescope field of
view. A configurable region of this grid can be cropped based on right ascension, declination, and galactic
latitude. These regularly spaced fields form the “sky patrol,” that is the default mode of operation for
wide-field surveys. For more details, see Section 4.3.3.

• Targeted Observations: Specific fields can be named as targets in the configuration file. These are
considered slightly more important than sky patrol fields.

• Late Burst Follow-up Observations: After a burst alert has been received, the location is logged in a
file described in Section 4.5. At late times, the burst location is repeatedly imaged at increasing time
intervals.

• Prompt Burst Observations: Upon receipt of a burst alert, if the weather is fine, the sun is down, and the
burst is above the horizon, the scheduler will immediately schedule a prompt burst observation sequence.

1.2. THE DAEMONS 13

The parameters for the schedule items are defined in astrod.conf, described in Chapter 4. Each schedule
item has a corresponding field or set of fields, and a set of configuration options. These include vetoes based
on field elevation, lunar illumination, solar elevation, and camera temperature. In addition, if a field is to be
imaged more than once, a cadence can be specified.

Each schedule item also has a corresponding imaging sequence defined in the configuration file. For sky
patrols, this is typically set to two consecutive long (60 s) exposures. For prompt burst responses, this is
currently set to 10 short exposures, 10 medium exposures, and 50 long exposures. New imaging sequences can
be defined by the operator, as described in Section 4.4.1.

The observing schedule is built in real-time. When the previous imaging sequence has finished, the scheduler
scans through the list of schedule items. First, each field referenced in all the schedule items is checked for
quick vetoes. If a field passes the veto cut then the scheduler calculates a score based on current airmass,
whether or not it is a specific target, and whether or not the cadence demands a return to the field. The relative
weights given to each of these criteria is configurable as described in Section 4.3.5. The scheduler then has
the telescope slew to the highest scoring field which is then imaged with the corresponding imaging sequence.
The typical calculation time to determine the best field from a sky patrol list is ∼ 0.2 seconds. Prompt burst
alerts are automatically put at the front of the queue with higher priority, yielding faster processing times. If
no schedule item passes the veto cuts then the telescope returns to “standby” mode, pointed at the zenith.

When astrod receives a SIG ROTSE from alertd, the current schedule is interrupted and the alert informa-
tion is copied from shared memory. The burst location is then logged for follow-up, and a burst alert schedule
item is put in the front of the schedule queue. If the trigger location is above the horizon and the system is
running in good weather, the mount is told immediately to slew to the trigger location, and system begins the
preconfigured imaging sequence. If any of these conditions are not met, the schedule item remains at the front
of the queue until it can be imaged, or its lifetime expires. If the burst field is not viewable, the scheduler will
continue with its normal operations.

Now I will describe an example of a typical observing sequence, when a sky patrol and various targets
have been configured. Under normal operation, the telescope will point near the maximum elevation of the
sky patrol fields, and fields will drift into this area. As specific target fields become visible, they are imaged,
and then the telescope returns to the regular patrol. When a field has a cadence specified, the scheduler tries
to keep to the cadence to the best of its ability.

The astrod scheduler is also responsible for telling the clamshell to open at sunset, and close at sunrise.
The configuration file is re-read at the end of each night’s observing after the clamshell is closed.

When the system is put in manual mode, astrod quietly loops until it regains scheduling control in auto
mode.

1.2.9 The User Daemon (userd) and the ROTSE User Shell (rush)

The User Daemon (userd) is the daemon that takes over issuing commands when the telescope system is put
into “manual” mode. It is a skeleton daemon whose sole purpose is to interface between the ROTSE User
Shell (rush) and the daq system. rush is a modified bourne shell (based on Byron Rakitzis’ rc shell) with
specific ROTSE commands built in to operate the hardware. While in “auto”: mode, rush is also useful for
monitoring the status of the system in real-time. Specifics on how to use rush are in Section 2.5.

14 CHAPTER 1. ROTSE-III DATA ACQUISITION SYSTEM

Chapter 2

How To Run the ROTSE-III System

2.1 Introduction

In this chapter I describe how to start and run a fully configured ROTSE-III Telescope system. Setting up
the system should be done by one of the fully certified ROTSE technicians.

Information on the daq system can be found in the Chapter 1. Working with configuration files is found
in Chapter 3. Scheduling information is in Chapter 4. Automated pipeline information is in Chapter 8. And
so it goes.

2.2 System Files

The system files contain everything needed to run the data acquisition system. This does not include auxillary
binaries, idl files, etc. These system files are put in the following directories:

/rotse/run/bin/ Directory with Binary Files
/rotse/run/etc/ Directory with Configuration Files
/rotse/run/cfg/ Directory with rotsed lockfile
/rotse/run/log/ Directory with daemon logfiles
/var/log/rotse.log ROTSE logfile

Image data is saved in the following directories:

/rotse/data/3a1/ Directory with normal image files
/rotse/data/3a2/ Directory with alert image files
/rotse/data/pipeline/ Automated Pipeline Parent Directory

For more details on file naming conventions, see Appendix A.

2.3 Starting the System

2.3.1 Monitoring Logfiles with tail -f

The UNIX command tail is indispensible for monitoring logfiles in realtime. tail on its own prints the last
20 lines of a text file. Combined with the -f “follow” option, it will print each new line from the logfile as it
is written. For example, to monitor the system status logfile:

$ tail -f /var/log/rotse.log
...
Jan 14 15:43:24 rotsei rotsed: Beginning ROTSE shutdown at Mon Jan 14 15:43:24 2002

15

16 CHAPTER 2. HOW TO RUN THE ROTSE-III SYSTEM

2.3.2 The DAQ System: rotsed

Starting up the system is easy. First log in as “observer.” Make sure all the configuration files are set correctly,
and that all the daemons you want to run are turned on in the rotsed.conf configuration file (see Section 3.2).
You should open two terminals, one to watch system status, and the second to start and operate the telescope.
A third terminal to monitor astrod.log is sometimes useful.

To monitor the system error logs, in the first terminal use tail -f as described in Section 2.3.1.
To start the system, in the second terminal type:

$ rotsed
$

In the logging terminal you should see the various daemons start up. If there is an error in one of the
configuration files, the error is logged and the system will not start up properly.

Upon startup, the system immediately goes into automatic mode, where the astrod scheduler has control
of the system startup, imaging, and shutdown. To issue manual commands to the telescope see Section 2.5 on
the ROTSE User Shell.

2.3.3 Online Analysis: The PacMans

Before you start the pacman programs, check if they are already running:

$ ps auxww | grep sexpac
...
$ ps auxww | grep idl

If either of these calls returns a process ID, do NOT run the following commands. To start the Pacman
programs, open a terminal and type:

$ cd /rotse/data/pipeline/
$ startsexpac
$ startidlpac
$ exit

The output of sexpacman is logged to a file sexpac.log. The output of idlpacman is logged to a file called
idlpac.log. The outputs can be monitored with the tail-f command as described in Section 2.3.1.

2.4 Shutting Down the ROTSE System

To shut down the ROTSE system, you send a kill -TERM signal to rotsed. There is a PERL script called
killrotse that performs this function.

For recalcitrant daemons that will not shut down, use killrotse -dammit to send a kill -KILL signal
to any remaining ROTSE processes.

2.5 The Rotse User Shell: rush

2.5.1 Starting rush

Starting rush is easy, as long as your .rcrc file is correctly configured. This better be the case...1

$ rush

1This is one of many responsibilities of your fully certified ROTSE technician.

2.5. THE ROTSE USER SHELL: RUSH 17

rush> rinit

The rinit command checks if rotsed is running, and if so, connects to the shared memory segment. You
must run rinit to get control of the telescope. If rotsed is not running you will get the following error:

rush> rinit
Using observatory file: /rotse/run/etc/observatory.conf
error: could not open /rotse/run/cfg/rotsed.cfg,
No such file or directory

No rotse control functions will be available
rush> exit

On the other hand, if you get a message like the following, you’re good to go.

Need the proper response when we have a working system

2.5.2 Shell Information

The ROTSE User Shell (rush) is a fully functional shell environment, and can run executables, shell scripts,
perform file manipulation, etc. In addition, there are many ROTSE-specific built-in functions that are de-
scribed in this chapter. Built-in functions can be used from any directory, and from any shell script.

For each command that operates hardware, after the command is issued control is returned to the shell.
Execution of the command may take some time. Monitoring the status with rstat reveals when the command
has finished. If you issue a command with the -w wait option, the shell will block until the command has
finished.

2.5.3 rhelp: The Help Command

The rhelp command lists all the builtin ROTSE commands available. These are summarized in Table 2.1.

2.5.4 rstat: The Status Command

The rstat command returns status information about the various running daemons. A sample output is listed
here, and is fairly self-explanatory.
rush> rstat

rush:
Loc Time: 2002 04 23 15 03 45.69
UTC: 2002 04 23 21 03 45.69
LMST: +04 05 39.784 MJD: 52387.877612 EPOCH 2002.3
SUN: up ra +02 05 12.36 dec +12 41 35.4

ha +02 00 27.42 el 54.35 az 237.12
MOON: in twilight ra +11 27 06.46 dec +08 50 29.5

ha -07 21 26.68 el -10.87 az 70.61 frac 0.855
userd:

ireq = 1, oreq = 0
rotsed:

state = ALERT
mode = MODE MANUAL

clamd:
timestamp = Tue Apr 23 15:03:44 2002
mode = CLAM CLOSE

mountd:
timestamp = Tue Apr 23 15:03:41 2002
mode = 0

18 CHAPTER 2. HOW TO RUN THE ROTSE-III SYSTEM

rush Command Description
rhelp Summary of all commands
rstat sun, moon, target & system status
rmode [none|manual|auto] set system control mode
rdome [-w] [open|close] open—close the dome
rsync [-w] move mount to sync position
rstand [-w] move mount to standby position
rpark [-w] move mount to park position
rmove [-w] [-c] [-n] [-j epoch]

[-s slew spd] -[r|h] [ra|ha] -d dec move mount to specified location
rshift [-w] [-r delta ra] [-d delta dec] [-t] shift the mount axes
fsync [-w] move focus to sync position
fmove [-w] -[a|r] [position|offset] move focus (in mm)
rdark [-w] -t time take a dark image
rexpose [-w] -t time -n name take an exposure
rabort [-w] abort an exposure
rsettemp temp set CCD temperature
ralert [stop] stop a current alert
rstarlog -r ra -d dec [-j epoch] log the current pointing
rstarlist print the currently logged stars
rstardel -r record delete a star record
rstarwrite -f filename output the logged stars to disk

Table 2.1: ROTSE commands built in to rush as described by the rhelp function.

mode = MOUNT IDLE
trkspd = 0.00
slwspd = 0
ra = 0.00
dec = 0.00
focus = 3.32 mm
encoder ra = 110024
encoder dec = 1192971

camerad:
timestamp = Tue Apr 23 15:03:41 2002
mode = PICT IDLE
corner (x, y) = 0, 0
size (x, y) = 2200, 2200
binsize (x, y) = 1, 1
frame number = 1
server status = 1
cooler status = TSTAT OVER
temperature (deg. F) = 19.37
temperature (deg. C) = -7.018990
start time = Tue Apr 23 15:02:56 2002
exposure time (sec.) = 20.00
filename = 020423 drk0200 3a001.fit
readout time (sec.) = 6.29
saturation count = 0
bias stddev = 41.45

spotd:
timestamp = Tue Apr 23 15:03:44 2002

2.5. THE ROTSE USER SHELL: RUSH 19

watchdog card temperature = 0
weathd:

timestamp = Tue Apr 23 15:03:25 2002
temp in = 79.5, temp out = 77.4
wind spd = 7.0, wind dir = 289
bar = 23.19, hum in = 2.0, hum out = 5.0
rain = 0.00, dewpt = 0.6
sky = 0.00, v. precip = 0.00
status = GOOD

alertd:
timestamp = Tue Apr 23 15:03:44 2002
mode = 99
trigger # = 2, serial # = 1
packet time = Fri May 24 15:03:41 1968
trigger ID = 0, time = Fri May 24 15:03:31 1968
RA = 24.56 +/- 0.30
dec = 25.20 +/- 0.30
intensity = 0.000, origin = SIMGCN

2.5.5 rmode: The Mode Command

On startup, the ROTSE system immediately goes into automatic (AUTO) mode. To issue manual commands,
rmode must be used.

• rmode [manual|auto] -- switch between auto and manual

In manual mode, userd and rush have control of the system. In auto mode, astrod has control of the
system. Remember to leave the system in auto mode for normal operation! In manual mode, astrod
simply loops until control of the system has been returned to it.

2.5.6 Clamshell Commands

• rdome [-w] [open|close] -- open or close the clamshell

The rdome command is used to open or close the clamshell. Any close command issued while the
clamshell is open or in the process of opening will override the current command and close the clamshell.

2.5.7 Mount Commands

• rsync [-w] -- move mount to sync position

The rsync command moves the mount to the home position and resets the encoder position. This
command must be run before the telescope can point at the sky.

• rstand [-w] -- move mount to standby position

The rstand command moves the mount to standby position as defined in the schierd.conf file. This
is usually set to the zenith position.

• rpark [-w] -- move mount to park position

The rpark command moves the mount to the park/stow position as defined in the schierd.conf file.
This is usually set just below the horizon to the north or south, depending on the location of the telescope.

• rmove [-w] [-c] [-n] -r ra -d dec [-j epoch] [-s slew spd (1-100)]

20 CHAPTER 2. HOW TO RUN THE ROTSE-III SYSTEM

• rmove [] -h ha -d dec -- move mount to specified location

The rmove command moves the mount to the specified target, and starts the mount tracking at sidereal
rate. The user can specify either right ascension and declination or hour angle and declination. The
epoch defaults to J2000.0. The RA/HA units are decimal hours or [hour minutes seconds], delimited by
spaces. The Dec units are decimal degrees or ◦/′/′′, also delimited by spaces.

The check option (-c) has rush check the validity of the coordinates before sending them to the mount.
If the operator is not careful, they might find the mount pointed below the horizon! However, there are
software and hardware limits to ensure the mount will not try to point outside the encoder range.

The slew speed option (-s) describes the percentage of the maximum speed at which to slew. Default is
25%.

Under normal operations, the mount will calculate the best focus from the temperature and elevation.
During testing and calibration, the operator might wish to override the auto focus with the -n “no
autofocus” option. The focus can be set manually using the focus move commands in Section 2.5.8.

• rshift [-w] [-r delta ra] [-d delta dec] [-t] --shift the mount axes

The rshift command moves the mount a specified amount on the RA and Dec axes. This command is
for use before a pointing model has been constructed. The values delta ra and delta dec refer directly
to the RA and Dec axes of the mount, and not to the celestial sphere. The units of delta ra and
delta dec are both degrees.

The tracking (-t) option starts tracking the mount at sidereal rate on the RA axis only. When the
mount is reasonably close to polar alignment this works fine for short exposures, but streaking appears
at long exposures. For long exposures a pointing model is necessary.

2.5.8 Focus Commands

• fsync [-w] -- move focus to sync position

The fsync command moves the focus motor to the home position, and resets the focus encoder to 0.
This command must be run before an absolute focus position can be used.

• fmove [-w] -a position -- move focus to absolute position

• fmove [-w] -r offset -- move focus offset mm

The fmove command moves the focus to an absolute position or a specified offset. The focus is measured
in millimeters. Under normal use, the absolute positions are easier to keep track of, although the current
focus postion can always be read from an rstat command.

2.5.9 Camera Commands

• rdark [-w] -t time -- take a dark image

The rdark command is used to take a dark frame. The length of the dark (in seconds) is specified with the
-t option. The dark will be placed in the path specified in camerad.conf, usually /rotse/data/3a1/.
The name follows the standard naming convention described in Chapter 3, with “drk” as the three letter
acronym, and the field replaced by the exposure time multiplied by 10. For example, the second 60
second dark image taken on March 15th, 2002 will be given the name 020312 drk0600 3a002.fit.

• rexpose [-w] -t time -n name -- take an exposure

The rexpose command is used to take an exposure. The length of the exposure (in seconds) is specified
with the -t option. The name can be up to 8 characters (this needs updating!) and replaces the three
letter acronym and number in the standard naming convention. The exposure will be placed in the path
specified in camerad.conf, usually /rotse/data/3a1/. The exposure counter at the end of the name is
automatically updated by the daq system, so up to 999 images of the same name can be taken on the
same day.

2.6. TRUE REALTIME STATUS MONITORING WITH RMONITOR 21

• rabort [-w] -- abort an exposure

The rabort command is used to abort an exposure (image or dark) in progress. If the camera is reading
out the abort will take place after the readout is finished. If no exposure is taking place this command
has no effect.

• rsettemp temp -- set CCD temperature

The rsettemp command is used to set the CCD temperature. This overrides the default set in camerad.conf
(see Section 3.5).

2.5.10 Alert Commands

• ralert [stop] -- stop a current alert

The ralert stop command is used to turn off alert mode. This is the same as the aoff command in
the astrod scheduler. (See Section 4.4.1) This command is useful during debugging and testing sessions
if the system gets stuck in alert mode for some reason.

2.5.11 Pointing Model Logging Commands

This set of commands is used to log the current nominal pointing (in encoder counts), current time, and known
star position. The output format is used by both the idl two-star pointing routines and the Tpoint package.
For more information on how to construct a pointing model, see Chapter 5.

• rstarlog -r ra (dec. hrs.) -d dec (dec. deg.) [-j epoch] -- log the current pointing

The rstarlog command logs the current telescope pointing, local mean sidereal time, and star position.
This should be used when the telescope is approximately tracking a known bright star.

• rstarlist -- print the currently logged stars

The rstarlist command prints to screen the star records that have already been logged.

• rstardel -r record -- delete a star record

The rstardel command deletes a record from the list of logged stars. This should be used to delete a
mistaken entry.

• rstarwrite -f filename -- output the logged stars to disk

The rstarwrite command outputs a Tpoint formatted file to disk with the currently logged stars from
rstarlog. The standard extention is .dat for a Tpoint file, although this is flexible.

2.6 True Realtime Status Monitoring with rmonitor

The rmonitor program is a true realtime status monitoring program that works with a low-bandwidth shell.
It was conceived as an easier status monitor than using rstat (see Section 2.5.4) repeatedly.

rmonitor hooks into the daq system through userd with the same method as rush. Under normal usage,
it is used as a companion to rush in a separate terminal window. Usage is easy; an alias will have been set
up to properly link to the system files:

$ rmonitor

rmonitor requires the terminal window to be at least 80 columns by 24 rows (the default terminal size), or
it will not run. It will take over the terminal screen and display something like the screen shot from Figure 2.1.

The key values are put on the screen in a (hopefully) easy to read format. The “Astronomical Stats” are
updated every 3 seconds. (This is configurable with the -t option on the command line). rmonitor polls the
system every 0.3 seconds (configurable with -p) to determine if any values have changed, and updates the
screen accordingly. Daemons that are running are put in bold face, and those that are not are put in regular

22 CHAPTER 2. HOW TO RUN THE ROTSE-III SYSTEM

Figure 2.1: Screen shot from the popular rmonitor program.

2.6. TRUE REALTIME STATUS MONITORING WITH RMONITOR 23

type. In addition, if the screen is large enough vertically, rmonitor will tail the /var/log/rotse.log logfile
in a separate ncurses window. The logfile window contains a buffer of 500 lines, and can be scrolled with the
up arrow, down arrow, page up, page down, and end keys.

In addition, rmonitor is persistent. That is, it will remain running even if rotsed shuts down, and will
continue to monitor the time, sun position and moon position. When another rotsed process is started,
rmonitor automatically hooks in and displays the latest status information.

24 CHAPTER 2. HOW TO RUN THE ROTSE-III SYSTEM

Chapter 3

The ROTSE-III Configuration Files

3.1 General Configuration File Information

A generic configuration file can be found in skeld.conf, which is a description of a hypothetical “skeleton”
daemon. The configuration files are each read in with a standard reader, and each file begins with the following
header and configuration parameters:

configuration file for skeld

#

#

format is "key value"

comments start with ‘ #’ and go to end of line

blank lines are okay

lines cannot be continued

loglevel 1 # 0,1,2 = terse,verbose,debug

logfile /rotse/run/log/skeld.log # logfile location

poll time 0.05 # main loop time quantum

sample time 3.0 # sample time in seconds

The loglevel can be set to 3 levels, which controls the amount of logging to the daemon logfile specified
by logfile. In addition, each daemon will log important system information to /var/log/rotse.log.

On each pass through its main loop, each daemon will check the shared memory for new commands. At
the end of the loop, it waits for poll time seconds. The daemon only updates its status every sample time
seconds, or sooner if the status changes significantly. If all of the poll times are set too small, then too many
daemons try to access the shared memory at the same time, and the system becomes unstable. Daemons for
which speed of response is not an issue should have larger poll time values.

In addition, multi-threaded daemons such as alertd and weathd have the following options:

sample time th 3.0 # thread sample time

init time 5.0 # how long wait for children

The sample time th is the individual thread sample time, for the children to update their status values
for the parent. The init time is how long to wait for the children to start up before assuming something has
gone wrong, and shutting down the system. Any such startup problems are logged to /var/log/rotse.log.

25

26 CHAPTER 3. THE ROTSE-III CONFIGURATION FILES

3.2 rotsed.conf

The Rotse Daemon is the central daemon that starts the other daemons and handles interprocess communica-
tion. The configuration has several sections: one section specific to rotsed and one section for each subsidiary
daemon. The rotsed section is as follows:

configuration file for rotsed
#
format is "key value"
comments start with ‘#’ and go to end of line
blank lines are okay
lines cannot be continued
#
stuff just for rotsed
#

loglevel 1 # 0,1,2 = terse,verbose,debug
logfile /rotse/run/log/rotsed.log
cfgfile /rotse/run/cfg/rotsed.cfg # Location of ipc key & lockfile
poll time 0.01 # main loop time quantum
email list "observer@rotse3a.lanl.gov"
jsfile /rotse/run/log/rotse3a.js # JavaScript Status File
jsdelay 60.0 # Interval (s) for js updates

The cfgfile acts as the lockfile for the daq system. If the cfgfile is present on the system, rotsed
will not start and logs the error to /var/log/rotse.log. This file also contains the IPC key for the shared
memory, so the other daemons can link up with the shared memory segment.

Every 60 seconds (set by the jsdelay keyword) the system writes a JavaScript formatted status file to
jsfile. A cron job is set up on the www.rotse.net computer to copy this status file every minute. The
JavaScript file is used to create a status webpage that is available for the public to view near real-time system
status, as in Section 8.4.2.

parameters to control weathd
#
weathd run 1 # yes/no = 1/0
weathd conf /rotse/run/etc/weathd.conf # confile name
weathd path /rotse/run/bin/weathd # path to executable
weathd tout 60.0 # timeout for updates
weathd tinit 120.0 # timeout for initialization
weathd tlog 300.0 # logging period

alertd run ...

astrod run ...

camerad run ...

clamd run ...

mountd run ...

spotd run ...

skeld run 0 # Should not run skeld

3.3. ALERTD.CONF 27

userd run ...

Each daemon can be set whether to run or not. For debugging and testing it is useful to run specific
daemons, but in normal operation it is vital to have all the daemons running. For each daemon the operator
must specify the path of the executable as well as the path to the configuration file. If a daemon exceeds its
initialization timeout on startup or its update timeout during normal operation, rotsed will automatically
shut down the system. These timeouts should be large enough that they are never exceeded during normal
operation, and they can depend on the cpu speed of the controller computer, as well as the additional load
from online processing.

3.3 alertd.conf

The Alert Daemon is a multi-threaded daemon, and requires the additional thread timeouts as listed above
in Section 3.1. The configuration file is divided into sections, for the real GCN monitor, the simulated GCN
monitor, and the packet type definitions.

configuration file for alertd
#
#
format is "key value"
comments start with ‘#’ and go to end of line
blank lines are okay
lines cannot be continued

loglevel 2 # 0,1,2 = terse,verbose,debug
logfile /rotse/run/log/alertd.log
poll time 0.05 # main loop time quantum
sample time 3.0 # sample time in seconds
sample time th 3.0 # thread sample time
err tout 5.0 # timeout for ALRM ERR condition
init time 5.0 # how long wait for children
email list observer@rotse3a.lanl.gov # emails to receive alerts
obsfile /rotse/run/etc/observatory.conf

Along with the options previously described, the operator must specify an e-mail list to receive alert
reports, and the observatory file, which contains the longitude, latitude, and altitude of the observatory.

The next sections configure the mode of operation of the GCN monitor and the simulated GCN monitor.
It is strongly recommended that both of these options be turned on at all times for normal operation!

================= GRB Coordinates Network monitor ============================
#
gcnmon run 1 # = 0/1 to run GCN monitor
gcnmon tout 0.0
gcnmon tpoll 0.1 # GCN sample time
gcnmon twait 3600.0 # ????
gcnmon devfile rotse3a.lanl.gov # host computer
gcn portnum 5147 # socket port for alert stat.
pkt delay 30.0 # not used
bind delay 60.0 # not used

================ Simulated GCN Coordinate Socket Server================
simgcn run 1 # = 0/1 to run Simulated GCN server
simgcn tout 0.0

28 CHAPTER 3. THE ROTSE-III CONFIGURATION FILES

simgcn tpoll 0.1 # SimGCN sample time
simgcn twait 3600.0 # ????-not sure what it does
simgcn devfile rotse3a.lanl.gov # host computer
simgcn portnum 2545 # socket port for SimGCN

These sections define the timeouts, device files and port numbers for the GCN Monitor and the SimGCN
Monitor. For the GCN Monitor the port number must be registered with Scott Bartlemy at NASA; the
SimGCN port number is arbitrary, and only needs to be known by the simalert program which simulates
GCN triggers. The host computer should be the full name of the local computer.

The Alert Server, Alert Client, and Alert Database threads are no longer supported, and should all be
turned off. Sometime in the future all references to this code will be deleted.

Available GCN Trigger types of interest (deprecated values are commented out)
#
header name index # pos div priority
#alerttype gcn test 2 100 101
alerttype gcn imalive 3 1 101
alerttype gcn killpacket 4 1 101

alerttype xrt alexis 25 100 101
alerttype xrt rxte pca 26 10000 101
alerttype xrt rxte asm 28 10000 101

alerttype grb beppo 34 10000 105
alerttype grb beppo nfi 36 10000 105
alerttype xrt asm trans 37 10000 105
alerttype grb ipn 39 10000 105

alerttype grb hete alert 40 10000 150
alerttype grb hete update 41 10000 151
alerttype grb hete final 42 10000 151
alerttype grb hete ground 43 10000 151

alerttype tla test alert 99 10000 101

These are the GRB alert definitions. The alert index is defined by the GCN at gcn.gsfc.nasa.gov/
sock pkt def doc.html. The pos div value determines the precision of the RA and Dec positions given in
the packet, also defined by the GCN. The larger values indicate more precise coordinates (although they might
not be accurate!). The priority values range from 101 to 200. The SimGCN server automatically subtracts
100 from the priority for any test alert. True GCN triggers therefore always override simulated GCN triggers.
In the case of a tie, the current trigger continues running, and the new trigger will wait until the current one
is finished. This situation has not occurred yet.

Any trigger packet that arrives without coordinates is logged and ignored. Most HETE-2 type 40 triggers
come without coordinates, although in the future they might include rough positions.

3.4 astrod.conf

For schedule configuration read Chapter 4. The scheduler also uses burst.conf and landoltfields.conf.

3.5 camerad.conf

Originally written for ROTSE-I, which had four co-mounted cameras, camerad.conf is written to accommo-
date up to four cameras, designated a,b,c, and d. For ROTSE-III, only one camera needs to be specified as

3.5. CAMERAD.CONF 29

follows:

configuration file for camerad

#

format is "key value"

comments start with ‘#’ and go to end of line

blank lines are okay

lines cannot be continued

loglevel 0 # 0,1,2 = terse,verbose,debug

logfile /rotse/run/log/camerad.log

poll time 0.1 # main loop time quantum

sample time 8.0 # sample time in seconds

err tout 5.0 # timeout for ALRM ERR condition

#

cam temp -20 # target temp. (in C) for cameras

csrv wait 5 # wait time for camserverd

There is one temperature that is used for all the cameras (in this case just 1). The temperature setting can
depend on the season and the particular camera. Note that the first ARC Camera (serial #80, planned to go
to SSO) does not have the correct temperature calibration, so the nominal -20◦C does not actually represent
the physical temperature of the CCD.

cama sock 1 # 0/1 to run camera

cama port 3900 # port for camera ’a’ node

cama name cam3a # name for camera ’a’ node

cama path /rotse/data/3a1/ # path to camera ’a’ sky/drk images

cama alertpath /rotse/data/3a2/ # path to camera ’a’ alert images

cama image id 3a # image identifier

cama ra 0.0 # offset in RA

cama dec 0.0 # offset in dec

cama focus 0.0 # focus position

cama telman Schier # Telescope/lens manufacturer

cama telmodel 1.9deg # Telescope/lens model

cama telsn 0 # Telescope/lens serial number

cama camman ARC # Camera manufacturer

cama cammodel EEV # Camera model

cama camsn 0 # Camera serial number

cama cardsn 80 # Camera PC card serial number

On startup, camerad will send a socket connect request to the port on the camera node. The inetd service
file is configured to automatically start up camserverd on receipt of this connect request. camerad will then
wait csrv wait seconds for the camera server to start up and respond. If the camera computer does not
respond or if it does not respond fast enough, camerad will shut down the system.

This configuration file also specifies the paths for writing files. The paths should be local drives on the
camera computer to remove any nfs latency. Separate hard drives are used for regular data and burst response
(“alert”) data so that the disk will not fill up if and when a burst trigger arrives. Each image is named as
described in Appendix A.

The ra and dec offsets were used in ROTSE-I when each camera had an offset from the mount position.
The focus option is also for ROTSE-I’s fixed focus cameras. These should be set to 0.0 for ROTSE-III. The
rest of the values are useful values that are stored in the FITS header, described in Appendix C.

30 CHAPTER 3. THE ROTSE-III CONFIGURATION FILES

3.6 camserverd.conf

camserverd controls more hardware-specific details of the running of the camera. The camserverd.conf file
contains the following:

configuration file for camserverd#
#
format is "key value"
comments start with ‘#’ and go to end of line
blank lines are okay
lines cannot be continued

poll time 0.05 # main loop time quantum
sample time 3.0 # sample time in seconds
driverpath /dev/astropci0 # location of driver
confpath /rotse/run/etc/ # .lod files location
lockpath /rotse/run/cfg/ # camera driver lockfile path

boundaries of image subframe for statistical analysis

subframe xmin 974 # minimum x-coordinate
subframe xmax 1074 # maximum x-coordinate
subframe ymin 974 # minimum y-coordinate
subframe ymax 1074 # maximum y-coordinate

boundaries for bias subframe

bias xmin 2
bias xmax 4
bias ymin 4
bias ymax 2075

Along with the standard daemon settings, we also have a driverpath, confpath and lockpath. The
driverpath specifies the location of the ARC camera driver. This is always set to /dev/astropci0. The
confpath specifies the location of the DSP files to be loaded into the ARC camera hardware boards. These
files should not be altered. The lockpath specifies where to put a lockfile when the camera driver is opened. If
the camera readout crashes, this file is not removed. You must reboot the camera computer before removing
the lockfile and restarting the daq system. Failure to comply with these instructions will result in a most
hideous and painful death.1

After each image is read out, camserverd calculates some statistics for the image subframe and the bias
subframe, specified above. These statistics include minimum, maximum, standard deviation, mean, and me-
dian, and can be a useful diagnostic for image quality and readnoise level.

FITS header parameters
cdelt 0.0009 # pixel scale (degrees)

quality cuts on image subframe

stddev cut 0.0 # minimum allowed std. deviation
max min 30000 # highest minimum pixel value

Miscellaneous

1Or rather, the camera computer will lock up and require a hard reboot, risking filesystem corruption.

3.7. CLAMD.CONF 31

docorr 0 # don’t run internal correction
amplifier 1 # 0=left,1=right,2=both
symlinkpath /rotse/data/3a1/links/ # location of symlinks

The cdelt header value is for World Coordinate System (WCS) positioning in the fits file. The quality
cuts are useful for saving disk space. If all the pixels in the central subframe are near saturation, the image
is assumed to be “bad,” and only the header is written to disk. The system also calculates the number of
saturated pixels in the image which can be a useful quick check of the focus quality. The amplifier variable
specifies which amplifier should be used.2 The readout time for dual-amplifier mode is 3s, but the ghosting of
saturated pixels becomes a problem that we have not dealt with yet.

The camserverd system was written to be able to perform dark subtraction and flat fielding of the images
in memory before they were written to disk. Unfortunately, this was too great a burden on the camera
computer, and caused the system to become unstable. For this reason, docorr should not be turned on.
Instead, a symbolic link to each image is put in the symlinkpath, where sexpacman.pl can find the files and
process them automatically, as described in Section 8.2.1.

3.7 clamd.conf

The clamd.conf file is quite simple and needs no additional explanation:

configuration file for clamd
#
format is "key value"
comments start with ‘#’ and go to end of line
blank lines are okay
lines cannot be continued

loglevel 1 # 0,1,2 = terse,verbose,debug
logfile /rotse/run/log/clamd.log
poll time 0.1 # main loop time quantum
#
sample time 3.0 # sample time in seconds
email list "observer@rotse3a.lanl.gov" # send mail to on open/close

3.8 schierd.conf

The schierd controls the mount as well as the focus motor. It can model pointing either from a simple
two-star model represented as a 3× 3 matrix, or from a more involved model from the Tpoint package. The
focus model comes from a simple linear model based on telescope temperature and elevation. For instructions
for how to get a pointing model see Chapter 5. For a focus model, see Chapter 6.

The first part of schierd.conf is self explanatory:

configuration file for schierd
#
format is "key value"
comments start with ‘#’ and go to end of line
blank lines are okay
lines cannot be continued

loglevel 1 # 0,1,2 = terse,verbose,debug

2We use amplifier 1 rather than 0 because amplifier 0 inverts the image. It’s just a bit easier this way.

32 CHAPTER 3. THE ROTSE-III CONFIGURATION FILES

logfile /rotse/run/log/schierd.log
poll time 0.1 # main loop time quantum
sample time 3.0 # sample time in seconds
err tout 5.0
#
mntman AlanSchier # mount manufacturer
mntmodel Equatorial # mount model
mntsn 2 # mount serial number
errormail observer@rotse3a.lanl.gov # where to send error messages

The next section contains numbers that should be general across the Schier mounts:

enctol 300 # tolerance for encoder stop
slewacc 16.4 20.6 # acceleration for mount (deg/s2̂)
maxvel 35.0 35.0 # slew velocity for mount (deg/s)
homevel 2.0 2.0 # velocity to find home (deg/s)
stowpos -85.0 35.0 # Stow pos. in Axis coords (deg)
standbypos -85.0 140.0 # Standby pos. in Axis coords (deg)
deg2enc 24382 19395 # encoder counts per deg
rarange -185.0 0.0 # range of the ra axis (deg)
decrange 0.0 220.0 # range of the dec axis (deg)
foctol 0.001 # focus tolerance

The acceleration and velocity parameters are stated in degrees for the RA axis (axis 0) first, and the Dec
axis (axis 1) second. The deg2enc values were calculated from the radius of the encoder tape on each drive
wheel. The RA range and Dec range were determined experimentally, and are just short of the hardware limit
switches. Under normal operation, the mount controller should never be told to move the telescope to an
illegal position, and we have multiple redundancies. The maximum velocities were determined by how fast we
could move the telescope without any odd noises coming from the mount. (Very scientific, eh?) The home
velocity is the default from Mr. Schier.

The stow position is (for the northern hemisphere) pointed north, slightly below the horizon. The standby
position is very close to the zenith. These values can change depending on the polar alignment of the telescope.

the following keyword defines a file that contains the 2-star rotation matrix
matfile /rotse/run/etc/mat0529c.mat # full path
The following keyword defines a file that contains a tpoint model
modfile /rotse/run/etc/mod 011211c.dat # full path
focusmodfile /rotse/run/etc/focusmod011214.dat # full path
obsfile /rotse/run/etc/observatory.conf # site information
statdir /rotse/data/pipeline/prod # idlpacman stat dir.
statroot rotse3a # root for statfile

The matfile matrix file specifies a two-star pointing model matrix file. The modfile is a Tpoint pointing
model file. If a Tpoint model file is specified it will use this pointing model instead of the two-star matrix. The
lines containing matfile and modfile can be commented out if no relevant pointing models exist. The mod-
elling schierd decides to use is logged in /var/log/rotse.log. The obsfile is the observatory information
file used for coordinate conversion.

The focusmodfile focus model file specifies the constants for the bilinear focus model fit. The format is
described in Section 3.8.1.

Due to the homing inaccuracies of the Schier mount (the homing can drift by tens of arcminutes), the first
calibrated image of the night is used to improve the home position. The automated calibration pipeline outputs
a summary of each calibrated image in a file called statdirstatroot stat.dat. After a home command,
schierd checks every ten minutes for the most recent calibrated image that was taken after the most recent
telescope homing, and updates the offset values. This improves pointing considerably.

3.9. SPOTD.CONF 33

3.8.1 The Focus Model Data File

The focus model consists of any number of constants for the focus fit, described in Section 6.2.2. The constants
are derived from the find focus3.pro program described in Section 6.5.

The focus model can consist of up to 20 terms. Each term can be an arbitrary polynomial combination of
temperature (in degrees Fahrenheit), elevation (in degrees), and azimuth (in degrees). No significant azimuth
dependance has been seen, and is not currently fitted.

Focus model data file
#
There can be up to 20 fit terms, with different polynomial degrees of
elevation "e" (in degrees), temperature "t" (in degrees fahrenheit)
and azimuth "a" (in degrees).
The constant offset can be denoted with "1".
#
Example:
term 1 3.50 -- constant offset
term eet 0.00003 -- temperature*(elevation^2)
#
term 1 3.4426761
term e -0.0068352
term ee 0.0000324
term t 0.0044962
term et 0.00005885
term eet -0.0000002498

3.9 spotd.conf

The configuration file for spotd is essentially the skeleton configuration file with a couple additions:

configuration file for spotd
#
format is "key value"
comments start with ‘#’ and go to end of line
blank lines are okay
lines cannot be continued

loglevel 1 # 0,1,2 = terse,verbose,debug
logfile /rotse/run/log/spotd.log
poll time 0.5 # main loop time quantum
sample time 3.0 # sample time in seconds

extra pulses 30 # extra time for mount shutdown

The Following options are obsolete
temperaturefile /dev/null # wdt501 watchdog temperature
wtempmax 120 # temperature before logging

Aside from the obsolete temperature monitor options, there is an extra pulses option for spotd. After a
sudden system shutdown, this allows the mount time to park itself before the clamshell closes. This was more
important for ROTSE-I where the mount did not have freedom to move with the clamshell closed. ROTSE-III
does have this freedom, and therefore this option is less important.

34 CHAPTER 3. THE ROTSE-III CONFIGURATION FILES

3.10 userd.conf

The userd.conf file should be identical to the astrod.conf file, except for the logfile location.

3.11 weathd.conf

The weathd.conf file describes how the system receives its weather information, and what cuts are applied
to determine when the weather turns “bad.” The Weather Daemon can either run standalone, or as a client
or server for more than one collateral telescope. The configuration file begins in the standard way:

configuration file for weathd
#
format is "key value"
comments start with ‘#’ and go to end of line
blank lines are okay
lines cannot be continued

loglevel 0 # 0,1,2 = terse,verbose,debug
logfile /rotse/run/log/weathd.log
poll time 0.1 # main loop time quantum
init time 50.0 # how long wait for children
email list "observer@rotse3a.lanl.gov" # send mail to
sample time 3 # sample time, in sec, for rotsed
sample time th 30 # sample time in seconds, for threads

The two important threads are described next:

Davis Weather Station monitor
#
dweath run 1 # = 0/1 to run Davis weather
dweath tout 50.0 # Davis Weather timeout
dweath tpoll 20.0 # Davis weather station sample time
dweath twait 3600.0 # time from last detection to okay given
dweath devfile /dev/ttyC2 # serial port for weath stat.

Vaisala Precipitation monitor
#
vprecip run 1 # = 0/1 to run Vaisala precip
vprecip tout 10.0
vprecip tpoll 1.0 # Vaisala rain detector sample time
vprecip twait 3600.0
vprecip devfile /dev/ml16pa-adc4

The Davis Weather Station is controlled via a serial interface, and reads the temperature, barometric
pressure, windspeed, humidity, and has a rain gauge. The Vaisala Precipitation Detector is read from a PCI
card, and will be coded to run with the CIO-CTR05 card that controls the Akerlof NightSky Monitor. This
code has not been written, but better be there pretty damn quick!

In the near future weathd will also control the Nightsky Monitor. The configuration file contains legacy
support for the old precipitation monitor, the “Wren Cloud Monitor,” and a weather database. These are not
implemented for ROTSE-III.

Any precipitation detected sets the weather to “bad,” and the clamshell is automatically closed. The limits
for weather station data are described at the end of the file:

3.11. WEATHD.CONF 35

tempi min -20.0 # Min. Temp. Inside
tempi max 100.0 # Max. Temp. Inside
tempo min -20.0 # Min. Temp. Outside
tempo max 110.0 # Max. Temp. Outside
dewdiff 5.0 # max allowed difference between tempo and dewpt
wspd min -0.2 # Min. Windspeed
wspd max 25.0 # Max. Windspeed
bar min 20.0 # Min. Bar. Pressure: set for 7000 elevation!
bar max 28.0 # Max. Bar. Pressure
humi min -0.1 # Min. Humidity Inside
humi max 200.0 # Max. Humidity Inside
humo min -0.1 # Min. Humidity Outside
humo max 85.0 # Max. Humidity Outside
rain max 100.00 # rain thresh. for davis sensor
maxsky 3.0 # Akerlof sky monitor max. (not implemented yet)
minvprecip 2.5 # Vaisala precip. detector min. (***)
mincloud 0.0 # Wren cloud monitor min. (not implemented)

And finally there is the configuration information for the client/server options for weathd.

Weather Server updater
(only sends badweather flag)
#
weathserver run 0 # = 0/1 to run
weathserver tout 3.0
weathserver tpoll 1.0 # sample time
weathserver twait 3600.0
weathserver devfile 3902 # socket port number

Weather Server2 updater
(sends weather data: temp, humi, wind, dewpt)
(disabled if weather station monitor is turned on)
#
weathserver2 run 0 # = 0/1 to run
weathserver2 tout 50.0
weathserver2 tpoll 20.0 # sample time
weathserver2 twait 3600.0
weathserver2 devfile 3903 # socket port number

Weather Client monitor
#
weathclient run 0 # = 0/1 to run
weathclient tout 3.0
weathclient tpoll 1.0 # sample time
weathclient twait 3600.0
weathclient devfile rotsei.lanl.gov
numserver 0 # server number (0=none,1=server1,2=server2,3=both)

There are two weather server options. The plain weathserver serves the “badweather” flag only, usually
from the Vaisala precipitation detector. The client need not know what went bad, only that it is damn
important to close the clamshell as soon as possible. The fancier weathserver2 serves Davis Weather Station
data every few minutes. This allows the remote machine to use the outside temperature and pressure, which
is essential for focusing.

36 CHAPTER 3. THE ROTSE-III CONFIGURATION FILES

As a weather client, the weathd can connect to one or both weather servers at a nearby location. This
is useful if there is only one Vaisala Detector for more than one telescope, while each telescope has its own
weather station.

This functionality was created for the early stages of ROTSE-III testing when it was sited next to the
working ROTSE-I system. This will probably not be used at the remote ROTSE-III locations, although
people at SSO or HESS are welcome to tap into our weather data.

Chapter 4

Rotse-III Scheduling

4.1 Introduction

The ROTSE-III scheduler is a modified queue scheduler implemented in astrod, described in detail in Sec-
tion 1.2.8. Although the priority of a specific schedule item can be set (this is essential for fast alert response),
astrod typically uses a scoring algorithm to decide which schedule item should be carried out next.

There are three levels of scheduling: guest user observations, prompt burst responses, and the regular
telescope operations such as sky patrols. The instructions for these operations are stored in three files:
astrod rtrig.conf, astrod rsched.conf, and astrod lsched.conf. These files should only be altered
directly by a qualified ROTSE technician. For guest observers, there is a Perl script, called user sched.pl
(See Section 4.6) that provides an interface to implement and manage their requested observations.

The standard ROTSE operational instructions consist of “trigger” definitions, which define a sequence of
images to be taken, and “schedule” definitions, which provide a set of parameters to astrod to let it decide
when and how to activate the trigger protocols. Standard triggers include burst responses, dark runs, runs to
construct flats, and focus runs, as well as a “sky patrol” on a regular grid on a specified region of sky. Guest
users may define triggers and schedules to carry out observing programs on specific desired targets. Each
trigger has an associated three letter acronym (TLA) that becomes the root of the image filename for easy
recognition and sorting later. How to set these various configuration parameters is described in this chapter.

The schedule is read in from astrod.conf on system startup (when rotsed is first launched), and near
the start of each night’s observing (when the sun dips below 5◦ above the horizon). In addition, although
you should never do this under normal circumstances, sending a SIG HUP signal to astrod erases the current
schedule and re-reads the configuration file. This can be accomplished with the following (the process id is
only an example):

$ ps auxww | grep astrod
root 20345 ... /rotse/run/bin/astrod ...
$ kill -HUP 20345

I should write a little perl script that does this automatically.

4.2 astrod and rotsed

The details of how astrod communicates with rotsed are a bit complicated. Although the end-user should
not need to know these details, they can create subtle errors and knowledge of the inner working will help
facilitate any debugging that might be necessary.

The Astronomical Scheduler Daemon must send out commands, verify that they are received, and wait for
them to finish. One of the main difficulties is the configurable nature of the system. For debugging purposes,
the operator is not required to run one or more of the camera, mount, or clamshell. Therefore, a non-response
from one of these daemons should not be assumed as a system failure.

37

38 CHAPTER 4. ROTSE-III SCHEDULING

When astrod sends a command, for example a MOVE comand for schierd, it fills a command structure
and copies it to shared memory. At this point rotsed copies the command to a location in shared memory
where schierd can receive it. Upon receipt of the command, schierd sets the system status MOVE bit “high.”
Now astrod knows the command has been received, and waits for schierd to reset the MOVE bit.

Unfortunately, if astrod does not wait long enough to see the MOVE bit set, it can assume the mount is not
running, and can follow up with a PICTURE command. This results in a streaky image taking partially while
the mount is still in motion. At the moment, astrod is set up with a min wait configuration option. This is
the minimum amount of time astrod will wait to see if a command is received. Currently set to 2 seconds,
the optimal value depends on processor speed and total system load.

4.3 astrod.conf

4.3.1 Daemon Parameters

The general parameters are familiar from the other descriptions of the configuration files, plus the min wait
command from Section 4.2:

Configuration file for Astronomical Scheduler Daemon ========================
ROTSE-III Version
The format is ‘‘key value’’. Comments start with ‘#’ and go to end of
line. Blank lines are okay, and lines cannot be continued.
#
loglevel 2 # 0,1,2 = terse,verbose,debug
logfile /rotse/run/log/astrod.log
poll time 0.05 # main loop time quantum
sample time 3.0 # sample time in seconds
err tout 150.0 # max time in ALARM state
-minimum wait period for ’rotsed’ to acquire command
min wait 2.0 # (in seconds)
obsfile /rotse/run/etc/observatory.conf

4.3.2 Exposure Parameters

The next section concerns the exposure parameters:

-speed used during slewing
slew spd 25 # speed relative to max. (in percent)
slew spd alert 100 # speed when initiating alert response
-definitions of exposure lengths in seconds:
tshort 5 # short exposure length
tmedium 20 # medium exposure length
tlong 60 # long exposure length
max moon 0.50 # max moon fraction to run a tlong;

otherwise tmedium is substituted
-cuts on angular positions of frame, sun and moon
min elev 20.0 # min elev. for frame center (in deg.)
sun elev 0.0 # max elev. of sun (in deg.)
moon dis 30.0 # min distance to moon (in deg.)

First, the slew speeds are specified. For both normal slews and alert slews, the percentage of the maximum
(as defined in schierd.conf) is given.

Next, the exposure length parameters. We have decided on standard values of 5 seconds, 20 seconds, and
60 seconds. Normal patrol operations use long (60s) exposures. However, when the moon is bright, the sky

4.3. ASTROD.CONF 39

brightness can nearly saturate a long 60s exposure. Therefore, when the moon is up at its fraction is greater
than max moon, the exposure lengths are automatically stopped down to tmedium. Note, the system will not
automatically take long exposures when the moon is brighter than that specified, either for regular sky patrols
or for burst responses.

Finally, general cuts are made on what the telescope will image. A field must be at least a certain altitude
above the horizon: an azimuthially-dependent number due to the elevation angle of the Declination limit
switch on the mount yoke. Simply put, the telescope cannot swing too far opposite the pointing axis, or it
will hit the yoke. In other directions, it can image closer to the horizon. The sun must of course be below a
designated negative altitude, and the field must be at least 30◦ from the moon. These cuts are usually only
relevant for prompt burst responses. More stringent cuts can and should be used for normal schedule items.

4.3.3 Sky Patrol Parameters

This section puts limits on the sky patrol:

-sky patrol scheduling parameters
long names 1 # 0/1: Use long names for the sky patrol
field of view 1.9 # field of view (in deg.)
min overlap 0.1 # min. overlap of generated fields
ra lim 0.0,24.0 # ra lim (in dec. hrs) for sky patrol
dec lim -1.5,1.5 # dec lim(in dec. deg) for sky patrol
glat cut 30.0 # galactic latitude cut (deg.)

ndarks 6 # num. darks of each length for a dark run
foc lim 3.04,3.50 # Limits for focus run
foc step 0.02 # Stepsize for focus run
focstandby 3.25 # standby focus position

The sky patrol grid is created by an algorithm that tiles the whole sky with the given field of view (in
degrees) and minimum overlap (in degrees) between fields. After the entire sky is gridded, the sky patrol list
is cropped according to the RA limits and Dec limits specified. Finally, the list is cropped again to remove low
galactic latitude fields below glat cut. There can only be one sky patrol list of fields specified. It is strongly
recommended to keep the sky patrol region small enough that the same fields are imaged every night for at
least a month. With no constraints, the scheduler will only image the lowest airmass fields, which change from
night to night.

The paramter ndarks specifies the number of darks of each length taken in a dark run. The focus limits and
focus step describe the focus settings used in a focus run. The focus limits used depend on the configuration
of the system and the temperature range expected during the night. For more information please see the focus
how-to documentation. Finally, the focus standby position is the default focus position when the mount is in
standby mode. This should be close to the median focus position for faster gamma-ray burst alert responses.

4.3.4 Burst Follow-up Parameters

The scheduler will automatically schedule follow-up images to burst alerts, and these parameters are described
here:

burstfile /rotse/run/etc/burst.conf # Burst data logfile
live days 3 # Number of days to follow up burst
fup priority 10 # Priority of follow-ups
fup trigger follow up # imaging sequence for follow-ups
fup sunel -15.0 # Max Sun elev. for follow-ups
powerlaw -1.5 # Assumed powerlaw for image intervals
fup frac change 0.1 # Predicted flux change to schedule followup

40 CHAPTER 4. ROTSE-III SCHEDULING

photfile /rotse/run/etc/landoltfields.conf # List of photometry fields

Each burst alert that is received is logged to the burstfile. For more information on the format of this
file please see Section 4.5.

The scheduler will plan follow-ups for live days after a burst. After that it is ignored in the burst file.
The imaging sequence for a follow-up is described by the fup trigger keyword. Currently set to 30 long
exposures, see Section 4.4.1 for information on how to change this.

The timing of the follow-ups is based on an assumption of a power-law decay of index powerlaw. We only
plan to image a burst when the counterpart has a chance to fade significantly. The minimum fractional change
of the flux can be set with fup frac change.

After every burst response and burst follow-up, the telescope automatically takes an image of a photometry
check field on the equator with a large number of Landolt standard stars. These fields are described in the
photfile file. The photometry trigger sequence is described in Section 4.4.1.

4.3.5 Scheduling Parameters

These are the constants used for calculating field scores:

cadence const 10.0 # Importance of cadence in scoring
targ const 10.0 # Importance of specified targets
elev const 5.0 # Importance of airmass
dec const 5.0 # Importance of hard-to-image fields

The default values seem to work quite well, although they may be tweaked in the future. Please note the
score for a field is only calculated if there are no higher priority fields to image, and if the field is not vetoed
for reasons of elevation, moon position, etc.

4.4 Triggers and Schedules

The way the ROTSE-III system plans observations is through defining a “trigger” type, which is a protocol for
a sequence of images to be taken, and then any number of “schedule” items can call on a given trigger protocol
in a highly configurable set of circumstances. A trigger type might say “take six images at 20 seconds each”,
but the schedule item tells where to point the telescope, how often, and under what conditions to take those
six images. There are a number of standard ROTSE triggers that are stored in the file astrod rtrig.conf
and standard schedule items are stored in astrod rsched.conf. The rest of this section uses the contents of
astrod rtrig.conf and astrod rsched.conf to explain how triggers and schedules work, as well as show the
command syntax. Guest users should be familar with these formats, but should never modify the system files.
Guest user triggers and schedules are defined in the file astrod lsched.conf, and this file can be modified
with a Perl script, as explained in Section 4.6.

4.4.1 Triggers: Defining Imaging Sequences

This is the imaging sequence (“trigger”) description from the astrod.conf file:

Each trigger has a name, a three-letter-acronym ("tla"), a
livetime (how long to hold in the queue before giving up), and a
scripted protocol which describes the kind of observation sequence to
be performed. The observations are described compactly with the
following vocabulary:
js = ’jiggled, short’ type of exposure
ts = ’tile, short’ (ie. tile = rastered 2x2 box around coord.)
jm = ’jiggled, medium’
tm = ’tile, medium’
jl = ’jiggled, long’

4.4. TRIGGERS AND SCHEDULES 41

tl = ’tile, long’
aoff = turn current alert off
calib = do dark run
fr = do focus run
#
example: 10jl = take 10 long, jiggled exposures.
#
Note: the number before each element indicates the number of times to
run that element. If you spevify "12ts", it will take 12 tiled
short exposures, covering the entire area only 3 times. (12/4tiles)
Name TLA Lifetime Protocol
---- --- -------- --------
#
trigger sky patrol sky 0 2jl
trigger dark run drk 0 calib
trigger focus run foc 0 fr
trigger home check hom 0 1js
trigger twi flat twi 0 1jm
trigger pointing tpt 0 2jm
trigger follow up fup 0 30jl
trigger photometry pht 0 2jl

The information from the configuration file is a good explanation of the format, and the is trigger items
available are summarized in Table 4.1. See Section 4.6 for step-by-step instructions for defining and imple-
menting as a guest user your own triggers and three-letter acronyms for supernova searches, AGN monitoring,
and other monitoring schemes. A couple of comments should be made about the operation. The lifetime
parameter should be set to 0 for normally scheduled triggers. This parameter is only used in burst alerts
triggers (see below).

Jiggling is the normal mode of operation. During jiggled exposures a random offset of up to 10 pixels is
added to the position of each image. This greatly reduces the number of false detections due to hot pixels.

The special trigger sequence calib indicates a dark run. During a dark run ndark dark exposures are
taken of each tshort, tmedium, and tlong exposure times.

The special trigger sequence fr indicates a focus run. During a focus run, images are taken at foc step
intervals in the boundaries defined by foc lim. For more information on how to create a focus model see the
focus how-to documentation.

The special trigger command aoff turns off a current running alert in alertd. Once aoff has been run,
any new trigger will interrupt the current observing sequence.

There must be a photometry item in the trigger list for Landolt field alert follow-ups. If this item is
missing the scheduler will not start up and an error is logged to /var/log/rotse.log.

Test triggers
trigger tla test alert tla 1 2jm,aoff
-HETE GRB trigger response
trigger grb hete alert gha 600 10js,10jm,50jl,aoff
trigger grb hete update ghu 600 10js,10jm,50jl,aoff
trigger grb hete final ghf 600 60jl,aoff
trigger grb hete ground ghg 600 60jl,aoff

These are the standard burst alert triggers. Every alert response will be followed by a sequence of follow-up
images as defined in Section 4.3.4. For every alert type defined in alertd.conf there must be a corresponding
trigger entry in astrod.conf. If a valid burst alert arrives and it is not configured here, then only a sequence
of follow-up images will be taken.

The lifetime here specifies the maximum time (in minutes) to wait for a burst field to become available
before scrapping the prompt response. A burst field might not be available due to the sun, elevation, or

42 CHAPTER 4. ROTSE-III SCHEDULING

Abbreviation Name Description
js jiggled, short short exposures, jiggled <10 pixels from field center
ts tiled, short short exposures, rastered 2×2 box around field center
jm jiggled, medium medium exposures, jiggled
tm tiled, medium medium exposures, tiled
jl jiggled, long long exposures, jiggled
tl tiled, long long exposures, tiled
aoff alert off turn system alert mode off
calib dark run dark calibration run. ndark dark exposures taken

for each exposure length
fr focus run take evenly spaced focus images of a given field.

See Section 4.3.3.

Table 4.1: Listing of the various trigger options in astrod.conf, and their description

weather. Some bursts in the wrong hemisphere will never become available, but are held in the queue anyway.
If a prompt response is deleted, follow-up sequences will be run as soon as the field is available.

4.4.2 Defining Schedule Items

This is the actual definition of the schedule. In general, you should always use the Perl script (See Section 4.6)
to process your schedules, but this information will enable you to construct your schedules as desired before
submitting them:

Schedule List - This should be useful to folks

Format:
sched trigger "flags"
eg:
sched pointing "-r 10,0 -d 80,0 -e 2000.0 -f 120"
#
Schedule items are queued and scored on their relative merits (elevation...)
-can set priority which overrides scores. Alerts have priority 100+.
#
The flags are:
-r hr,min : RA, with no space between hr,min
-d deg,min : Dec, ""
-e epoch : epoch
-a azimuth : Azimuth in degrees (useful for focus, etc)
-l elevation : Elevation in degrees
-t max times : Max # times to run the schedule item
-p priority : priority. Most should be default (0)
-L user ID number : The local user’s ID number
-m min elev : Only image if it is above min. elevation
-u max sun : Max. elevation of the sun for the item
-s : Is a Sky Patrol. These have less weight
-i interval : Minimum time (minutes) between running
-c cadence : Exact time (minutes) between running
-T : Check camera temperature at target
-M min dmoon : Minimum distance to the moon for exposure
-S : check if the moon has set

4.5. BURST.CONF 43

-P : do a "photometry" frame
#
Obviously, you cannot specify both ra/dec and az/el!
#--

Each schedule item is tied to a specific trigger. If a schedule item is given without a corresponding trigger,
an error will be logged to /var/log/rotse.log and astrod will shut down.

When specifying a trigger field, the operator can either specify RA/Dec or Az/El. This second mode is
used for focus runs. Schedule items with specified positions are given more weight than sky patrol items under
the assumption that if the operator cared enough to type it in, it must be important. The additional weight
is given by the value targ const in Section 4.3.5.

The difference between a cadence -c and an interval -i is the weight given by cadence const. If a cadence
is specified, it means that the field should be imaged at that specified cadence, which becomes more important
than airmass. If -t 1 is specified then the cadence and interval have no meaning. You can only specify one
of these three options, or an error will be logged and the system will not start.

A local user must set the priority -p option, as well as the -L user ID number. The photometry option -P
is also not frequently used.

The options -u,-m,-M,-S are used to override the system defaults. It is always important to remember the
-u option, or the images might be taken in early twilight before it is dark!

sched sky patrol "-s -u -18.0 -t 3 -c 30 -S -m 30.0" # skypatrol (-s)
sched home check "-u -10.0 -t 1 -r lmst -d 0,0 -e 2000.0"
sched dark run "-t 1 -u -15.0 -i 300 -T"

In the default schedule listed above, it should first be noted that the order of schedule items or option
parameters is not important.

The sky patrol item is designated by the -s option. The sky patrol will only begin when the sun is below
−18◦. Each field will be imaged 3 times with a cadence of 30 minutes. The moon must be below the horizon
to do the sky patrol (-S), and the field must be at least 30◦ elevation.

The home check item runs just once, when the sun is 10◦ below the horizon. It points at 0◦ declination,
at the local mean sidereal time, or due south on the equator. This single short image is calibrated and is used
by schierd to check the home position. Any calibrated image can be used for this purpose, but it is nice to
have a single image taken before any sky patrols or burst responses.

The dark run item runs just once, when the sun is 15◦ below the horizon, when there is no stray light. If
the camera has not reached its target temperature (from the -T option), the scheduler will wait to take the
dark calibration run.

The actual order of operation here would be the home check, the dark run, and then the sky patrol for the
whole night. Any target fields specified would interrupt the sky patrol where appropriate.

4.5 burst.conf

The burst.conf file can be used to input burst coordinates for follow-up when no GCN alert was received.
This can happen because the system was down, or because only a GCN circular was issued, with no socket
notice.

Burst configuration file
--the comments cannot be changed
#
#grb date type num. R.A. Dec. Epoch Err. UT Observations
(dec.deg) (dec.deg) (’) (dec.hr)
#--
grb 011122 34 0 173.62540 -76.03740 2000.0 5.0 0.7828

44 CHAPTER 4. ROTSE-III SCHEDULING

This file is read in by astrod at the start of every evening. The operator can force a re-reading of the
entire schedule (including burst.conf) by sending a hangup signal as described in Section 4.1.

Each burst is given a date, type, serial number, position, error (in arcminutes) and UT at time of burst in
decimal hours. The observations column is filled in by the scheduler and should not be altered by the operator.
The scheduler will then use the timing information to schedule follow-ups as described above in Section 4.3.4.

4.6 Guest User Schedule Submission

In order to avoid the confusion of having multiple users all trying to modify the same astrod.conf file to
request their observations, we’ve established a “scheduler” account to which you can log in for the purpose
of account management. Within the home directory of that guest account, you should create a directory for
yourself, to avoid confusion with other guest users. Each guest user should be assigned a user number from 1
to 50 by the host institution; you may wish to use this in your directory name. It will become critical later
on.

All of your interaction with the scheduler files should be through the Perl script user sched.pl, which
will be in the path for the guest account. Call it without any options to get a simple description of its usage.
In order to schedule ROTSE-III observations, you will write your own local schedule file containing triggers
and schedules (as defined above), and you must get this script to agree that there are no mistakes or problems
within your list. The script cannot, of course, confirm that your schedule will perform the observations you
have in mind, if you have misunderstood the command formatting, but it will ensure that you can’t crash the
system or confuse your observations with others’.

This is what you will see if you run the script with no options:

Welcome to the ROTSE-III scheduler script.

Options may be in any order.
Use -e to extract your schedule to your local directory.
Then modify that file to match what you want to schedule.
Then use -s to submit your modified file.
If you do not specify a file name, local user file.txt is assumed.
Make sure the first line of this file is your user cap.
Use -t with -s to test submission but not to modify lsched.
For a test submission, output is written to local test file.txt in the working directory.

Syntax: user sched.pl -u <Your user ID number> [-s|e] [optional file name] [-t]

To get more than the usage instruction from the script, you must use the -u option to give it your user
number. The script can then perform two operations: it will extract all triggers and schedules from the
standard configuration file astrod lsched.conf into a local file in your directory, or it can insert your local
file into astrod lsched.conf to be used in planning the night’s observations. You distinguish between these
two operating modes by using either the -s or -e command line options. One of these two options must be
present. You may include a file name after this option call, if you wish. If not, the script will assume a default
file name of “local user file.txt”. There is a final option that you can use, -t, which runs in conjunction
with option -s. It will check your local file for submission, but instead of replacing the official configuration file
with your updated version, it will write the updated version of astrod lsched.conf to your local directory
under the name “local test file.txt”. Use this option if you want to test your schedule file for errors, but
don’t want to actually put your instructions to the telescope yet.

You should always begin your session by running in extract mode, even if you have never used it before.
The returned file will always start with a line called “user cap”. This line establishes what percent of the
nightly observing time has been allocated to you. The first number on the line will be your user number. The
second number should be your percentage (a number between 0 and 30), and you can put any information
you like after a number sign. Your real name would be a useful thing to put in this comment area. The
“user cap” line should always come first in your schedule file.

4.6. GUEST USER SCHEDULE SUBMISSION 45

If you run “user sched.pl -u 5 -e”, your first local schedule file will have the single line:

user cap 5 [your allowed percentage] # [comments, like your name]

Once you have a user cap line in place, you can define as many triggers and schedules as you want. When
you run user sched.pl in extract mode, it reports a list of all the triggers that have already been defined by
other people. You may not use any of these trigger names or three-letter-acronyms. Construct your trigger
types and schedules as described above in Sections 4.4.1 and 4.4.2. The only difference is that your trigger
type definitions must include “userNN” (where “NN” is your user ID number) in the comment field. If you
omit this, the Perl script will insert it for you, and remind you to include it in the future. Also make sure you
include your user number (-L NN) and schedule priority (-p #) in the options for your schedule items. The
trigger name given in your schedule item must match one of the trigger names given earlier in this file. In
general, the order of your line items in this file is irrelevant, except that a trigger item definition must come
earlier than the use of that trigger name in a schedule item.

When you are satisfied with your schedule file, you may check it for errors by running user sched.pl in
test submit mode (-s [file name] -t). The script will print to standard error a running description of its
progress as it evaluates your file. Please keep a close eye on these output lines for errors. Any errors discovered
should (we hope) be clearly reported for easy fixing. If the script finds no errors, it will write a complete local
schedule file (local test file.txt) to your local directory for your perusal. If everything looks in order, run
user sched.pl one last time without the -t option, and you are done.

A sample local user schedule file might look like this:

user cap 5 25 # I am Simon, my ID number is 5, and I get 25% of the time
trigger simons kvars skv 0 2jm,4js # user5 -- I want 2 20 s exposures and 4 5 s
trigger supnovae sne 0 2jl # user5 -- I want 2 60 s exposures
sched simons kvars "-r 23,12 -d -12,25 -e 2000.0 -p 2 -L 5 -i 1000 -m 45"
sched simons kvars "-r 10.5 -d 10,2 -e 2000.0 -p 1 -L 5 -i 1000 -m 45"
sched supnovae "-r 1 -d 56 -e 2000.0 -p 1 -L 5 -i 1000 -m 45"

If you were to submit such a file, using the command “user sched.pl -u 5 -s -t”, you would see the fol-
lowing output:

Submit mode: Sched file local user file.txt will be submitted.
Reading file user5file.txt
XXX
Checking: "user cap 5 25 # I am Simon, my ID number is 5, and I get 25% of the time"
Line clears successfully.
XXX
Checking: "trigger simons kvars skv 0 2jm,4js # user5 -- I want 2 20 s exposures and 4 5 s"

Parsing trigger type : "trigger simons kvars skv 0 2jm,4js "
This trigger first will take 2 jiggled medium exposures.
And then it will take 4 jiggled short exposures.

Line clears successfully.
XXX
Checking: "trigger supnovae sne 0 2jl # user5 -- I want 2 60 s exposures"

Parsing trigger type : "trigger supnovae sne 0 2jl "
This trigger first will take 2 jiggled long exposures.

46 CHAPTER 4. ROTSE-III SCHEDULING

Line clears successfully.
XXX
Checking: "sched simons kvars "-r 23,12 -d -12,25 -e 2000.0 -p 2 -L 5 -i 1000 -m 45""

Parsing schedule options "-r 23,12 -d -12,25 -e 2000.0 -p 2 -L 5 -i 1000 -m 45"
Parse successful.

Line clears successfully.
XXX
Checking: "sched simons kvars "-r 10.5 -d 10,2 -e 2000.0 -p 1 -L 5 -i 1000 -m 45""

Parsing schedule options "-r 10.5 -d 10,2 -e 2000.0 -p 1 -L 5 -i 1000 -m 45"
Parse successful.

Line clears successfully.
XXX
Checking: "sched supnovae "-r 1 -d 56 -e 2000.0 -p 1 -L 5 -i 1000 -m 45""

Parsing schedule options "-r 1 -d 56 -e 2000.0 -p 1 -L 5 -i 1000 -m 45"
Parse successful.

Line clears successfully.
XXX
Congratulations! I could find no errors in your submitted file.
Writing submission to local test file.txt

Please note that this final submission must be completed before the sun falls to 5◦ above the horizon at
the telescope site, or your schedule will not be read into the DAQ for the evening’s observing procedures.
Also be aware that it’s quite possible for someone to submit their file after you have extracted, but before you
have resubmitted, yours. If that person happens to use a trigger name or TLA that you are adding to your
schedule, you will get an error when you resubmit, despite the fact that when you checked out, the trigger
was free.

Chapter 5

Polar Alignment and Pointing Models

5.1 Introduction

This chapter contains (at the moment rough) instructions for polar alignment of the telescope, as well as
constructing crude and sophisticated pointing models. Any questions should be sent to erykoff@umich.edu.

Polar alignment requires a couple of strong people and two car jacks to safely raise and lower the telescope.
Please see Chapter 2 for information on starting the system and using the rush shell environment.
Once the telescope is polar aligned and a basic pointing model has been calculated (either from two stars

or multiple stars), it is easy to bootstrap a more complicated pointing model. This method is described in
Section 5.4.

5.2 Polar Alignment

5.2.1 General Information

Once the telescope is initially aligned with the eye, the key to fixing the polar alignment is measuring the
alignment from the celestial sphere. Finding good stars can be a hassle, however. For initial star-finding, a
TelRad attached to the OTA is essential.

This section is divided into information for TelRad alignment, the Two-Star Pointing method, Tpoint
Pointing method, and finally tips on how to adjust the telescope polar alignment. A Two-Star model can be
created much faster than a Tpoint model, which requires at least 4 or 5 stars.[check this!] The disadvantage
of the Two-Star method is that it requires an external measurement of the telescope pole in encoder counts.
Two ways to make this measurement are described in Section 5.2.3.

5.2.2 TelRad Alignment

The first task is to align the TelRad for quicker starfinding. Note that adjustment of the secondary tilt for
optical alignment purposes causes the TelRad to go out of alignment quickly. However, once the telescope has
been polar aligned you should not need the TelRad again.

The outer ring through the TelRad sight is 1 degree, and the inner ring is 0.5 degrees. [Perhaps]
TelRad Alignment:

1. Identify a bright star on the sky that is above the horizon.

This can be accomplished with a star chart or a knowledgeable individual. It will be necessary to know
these coordinates for pointing model creation.

2. Move the telescope using rshift to point at the star.

The star should be as close to the center of the TelRad as possible without taking too many iterations.

47

48 CHAPTER 5. POLAR ALIGNMENT AND POINTING MODELS

3. Take a short exposure of the star:

rush> rshift -t ; this starts tracking if it isn’t already

rush> rexpose -t 2 -n star1

A couple of seconds is plenty of time to image a bright star. To view the image, open a separate terminal
window and type something like the following:

$ cd /rotse/data/3a1/ ; this could be 3b1, or 3c1 depending on the system

$ ds9 date star1 3a001.fit

Hopefully the star is in the image! If it is not, then you just have to play around with jiggling a degree
or so. If it is, then...

4. Center the Star on the CCD

Move the telescope with rshift until the star is centered on the CCD. Remember, the field of view is
1.9◦. Depending on the orientation of the camera, you will have to figure out which axes move the star
in which direction. Once these have been discovered, a little post-it note with the axis orientations is
helpful to affix to the enclosure monitor.

5. Record the star with rstarlog

This star can act as the first star in the pointing model, so record its position to the log.

6. Adjust the TelRad

Adjust the TelRad so that the laser sight is centered on the star, which is centered on the CCD. This
will make the following steps much easier.

5.2.3 Two-Star Pointing

Finding the Telescope Pole Offset - Mechanically

The telescope axis can be determined by rapidly slewing the telescope along the RA axis during an exposure,
at 50% maximum slew speed. If the telescope is pointing along the dec axis, the stars should create circles
around the center of the CCD. Finding this position can take a few trials. It need not be precise, (up to ∼ 0.5◦

is fine, for there are other large systematic errors in the two-star rotation matrix.
When the telescope is pointing along its axis, record the axis 1 encoder position using rstat described in

Section 2.5.4. Convert this to degrees by dividing by the conversion factor in schierd.conf, which should be
19395. Subtract the converted value from 90◦, and you have the offset.

Finding the Telescope Pole Offset - with Tpoint

If a Tpoint model has already been constructed with several stars, the polar offset value is in the Tpoint model
file created as in Section 5.3. The ID value described in Section 5.5 is the declination axis offset in arcseconds.
To use this value as the telescope pole offset for two-star pointing, simply divide ID by 3600. For the prototype
(3a) telescope this is around −3.9◦. Each telescope will have a different value because this number depends
on the precise location of the dec axis homing limit switch.

Calculating a Two-Star Matrix

The steps here are very similar to those in Section 5.2.2, where the individual steps are detailed. We assume
that the operator has already logged the first star from Section 5.2.2.

1. Identify a bright star far from any previously logged stars.

2. Move the telescope using rshift -t to point the TelRad at the star.

3. Take a short exposure of the star with rexpose.

4. Repeat until the star is centered on the CCD.

5.2. POLAR ALIGNMENT 49

5. Record the star with rstarlog.

6. When two stars have been recorded, output the file with rstarwrite.

7. Run the interactive idl program twostartp.pro.

This program calculates a two-star matrix using a file written by rstarwrite. It can also calculate the
telescope pole location. The syntax is as follows.

IDL> twostartp

syntax - twostartp,starfile,rconv=rconv,dconv=dconv,lon=lon,the offset=the offset

Reads in tpoint formatted files

The lon option is the telescope longitude, in degrees. The default is LANL. The the offset option is
the telescope polar offset as determined in Section 5.2.3. The default is -3.8◦, for the 3a telescope. After
starting, the program presents a menu of options.

8. Chose option ‘c’ to find the telescope pole.

This is where some experimentation needs to be done to figure out whether the numbers mean the
telescope should be moved up, down, east or west. This will be added to later revisions of this chapter.

9. Chose option ‘f’ to save the matrix file to disk.

5.2.4 A Simple Tpoint Model

To create a simple Tpoint model, begin by following steps 1-5 in Section 5.2.2. Continuing from there, follow
the steps below:

1. Repeat for several stars, certainly at least 4, perhaps 5.

2. Output the file with rstarwrite.

3. Create a pointing model as described in Section 5.3.

4. Use the ME and MA values in the model to find the polar offset.

The units of ME and MA are in arcseconds. Here I quote from the Tpoint documentation:

• MA Polar Axis Misalignment in Azimuth
In the northern hemisphere, positive MA means that the pole of the mounting is to the right of due
north.
In the southern hemisphere, positive MA means that the pole of the mounting is to the right of due
south.

• ME Polar Axis Misalignment in Elevation
In the northern hemisphere, positive ME means that the pole of the mounting is below the true
(unrefracted) pole. [This is the alignment we have been using, which is easier for our wide-field
systems.]
In the southern hemisphere, positive ME means that the pole of the mounting is above the true
(unrefracted) pole.

5.2.5 Adjusting the Polar Alignment

To raise and lower the telescope, using the car jacks is very handy. Just place the carjacks under the telescope
bars, to stabilise and move the telescope while the bolts are unfastened. To move the telescope left and right
requires a strong back and a lot of luck. There are usually a few iterations before the alignment is acceptable.

If Tpoint was used for the first iteration to calculate the mechanical offset, then the two-star method can
be used for the following iterations of the polar alignment. We ran quite well with a 0.7◦ polar offset at LANL
with no noticable ill-effects. The modelling takes the misalignment into account, and the telescope motor is
able to track both axes. A permanent installation would probably desire better polar alignment, however.

50 CHAPTER 5. POLAR ALIGNMENT AND POINTING MODELS

5.3 Using Tpoint

The Tpoint (TM) program by Patrick Wallace is a tricky beast. After much trial and error, I have come up
with a way of getting a pointing model that is quite usable, especially when the data from the whole sky is
available. I describe here my ad-hoc method of using Tpoint to get a satisfactory pointing model. If you make
a mistake, the easiest thing to do is quit Tpoint and restart the fitting procedure. This section is meant to
be used in conjunction with Section 5.2.4 or Section 5.4. What is done with the output model depends on
whether or not the telescope has been polar aligned.

1. Star Tpoint In the directory with the .dat file output by rstarwrite

$ tpoint

...

TPOINT ready for use: type HELP for assistance, END to quit.

*

2. Load in the Tpoint data file.

* indat file.dat

ROTSE-III Prototype

:EQUAT

:NODA

:ALLSKY

35 52 8.4 2001 5 30

14 16 0.00 19 12 0.00 20 20 30.00 164 4 0.00 13 40.87

...

A list of all the stars logged should be printed to the screen.

3. Set Tpoint to adjust star positions to fit telescope positions. This is the modelling that schierd uses.

* adjust s

Model will adjust stars to fit telescope.

4. First, have Tpoint fit to the index offsets for the ra and dec axes. The “use” feature tells the Tpoint to
fit the stars to these particular variables.

* use ih id

5. Next, do the fit to these parameters. The fit command should be run several times, until the errors
reported stop shrinking.

* fit

coeff change value sigma

1 IH -0.000-319288.44 852.791

2 ID -0.000 -12374.29 654.834

Sky RMS =1464.25

Popn SD =1890.34

When the “change” column sits at 0, you can move on.

6. Fix the index offsets with fix, and now have Tpoint use the collimation and polar alignment errors for
its next fit.

* fix ih id

* use np ch me ma

5.4. REFINING THE POINTING MODEL 51

7. Fit with the fit command several more times until the change goes to 0, as before.

8. Use the whole suite of parameters, by unfixing IH and ID and fit several more times until Tpoint settles
on a solution.

* use ih id

* fit

...

9. Save the model to disk and exit.

* outmod modelfile.dat

* end

10. The model file can now be viewed with a textfile viewer to extract notable parameters, or can be used
verbatim by schierd.conf as described in Section 3.8. The model file should look something like the
following:

ROTSE-III Prototype

S 1862248.2854 0.000 0.0000

IH -320481.5133 114.58002

ID -15074.2754 15.45639

NP -284.0514 24.71350

CH -356.0703 109.36628

ME -2233.0871 18.88705

MA -728.2158 9.84367

END

The column to the right of the fit parameter names contains the fit values, in arcseconds. The third
column contains the rms error in the fit for that parameter.

5.4 Refining the Pointing Model

Once the telescope has been polar aligned and a rudimentary pointing model has been created (either with
the two-star matrix or Tpoint), refining the model is easy. Since the ROTSE-III telescopes have such wide-
fields, astrometric calibration can be done from the bright USNO A2.0 catalog stars in the field, and superfine
accuracy is not essential. Pointing errors of over 30 arcminutes are usually handled comfortably by the
calibration software, but are not desirable for normal operation.

With a simple pointing model installed in the schierd.conf configuration file, the telescope can point to
celestial coordinates accurately with rmove and the astronomical scheduler daemon. With a single night of
all-sky imaging, a more refined pointing model can be bootstrapped on top of the simple model.

The astrod.conf.pointing sample file contains a list of hundreds of fields evenly gridded across the entire
celestial sphere. Whatever fields that are visible from the local site will be used to image the whole sky. An
idl program called cobj to tp.pro converts the calibrated file output to a form to input into Tpoint, and a
refined pointing model can be created. Here are the steps to accomplish this:

1. Copy the pointing fields from /rotse/run/etc/astrod.conf.pointing into the current astrod.conf
file.

2. Run on a reasonably clear night. Moon illumination is not important, unless the all-sky data is also
being used to calculate a flatfield image.

For information on how to run the system and start the pipeline, see Chapter 2 and Chapter 8.

52 CHAPTER 5. POLAR ALIGNMENT AND POINTING MODELS

3. Copy the object list (cobj) files from the pipeline directory to a temporary directory.

The pipeline directory should be set to /rotse/data/pipeline/prod/.

4. Create a text file with the list of cobj files.

$ cd temporary directory

$ ls --color=never date *cobj.fit > cobj.list

5. Start idl and run cobj to tp.pro.

$ idl

IDL> cobj to tp

syntax - cobj to tp,listfile,outname,ptgstr,...

IDL> cobj to tp,’cobj.list’,’tpointfile.dat’,pointing structure

6. The file tpointfile.dat (or whatever you chose to name it) now has hundreds of stars for Tpoint to
create a pointing model.

7. Run Tpoint on tpointfile.dat as described in Section 5.3

8. Update schierd.conf as described in Section 3.8 to use the new Tpoint model file.

5.5 Tpoint Formulas

This is taken verbatim from the Tpoint (TM) manual by Patrick Wallace.
Here I describe the formulas that are related to the pointing model implemented in schierd for the

ROTSE-III telescope. This is for quick reference only, and details can be found in the Tpoint manual.

• ID Index Error in Declination

Declination index error in an equatorial mount: the zero-point in δ.

∆δ = +ID

• IH Index Error in Hour Angle

Hour angle index error in an equatorial mount: the zero-point of h.

∆h = +IH

• NP HA/Dec Non-perpendicularity

In an equatorial mount, if the polar axis and declination axis are not exactly at right angles, east-west
shifts of the image occur that are proportional to sin δ.

∆h ' +NP tan δ

• CH East-West Collimation Error

In an equatorial mount, the collimation error is the non-perpendicularity between the nominated pointing
direction and the declination axis. It produces an east-west shift that is constant for all declinations.

∆h ' +CH sec δ

• ME Polar Axis Misalignment in Elevation

Vertical misalignment of the polar axis of an equatorial mount: a rotation about an east-west axis equal
to coefficient ME.

∆h ' +ME sinh tan δ

∆δ ' +ME cos h

5.5. TPOINT FORMULAS 53

• MA Polar Axis Misalignment in Azimuth

Misalignment of the polar axis of an equatorial mount to the left or right of the true pole: a rotation
about an axis through (h = δ = 0) equal to coefficient MA.

∆h ' −MA cos h tan δ

∆δ ' +MA sinh

54 CHAPTER 5. POLAR ALIGNMENT AND POINTING MODELS

Chapter 6

Building A Better Focus Model

6.1 Introduction

This chapter contains instructions for creating a focus model for the ROTSE-III telescope system. At least
one night must be dedicated to taking focus data, and some follow-up focus data must be taken at different
temperature ranges. Focus data is built up with many “focus runs”, described in Section 4.3.3 and Table 4.1.
Each focus run is a set of exposures taken on a field at regular focus position intervals.

Please see Chapter 2 for information on starting the system. Chapter 4 should also be consulted on how
to make modifications to the the astrod.conf scheduling configuration file.

6.2 The Focus Model

6.2.1 The Focus System

The ROTSE-III focus system consists of a stepper-motor and a movable diaphragm which pushes the secondary
mirror. The diaphragm has a travel range of around 1 mm. The stepper motor has an arbitrary zero-point
that can be set with a screwdriver. The stepper motor puts pressure on the diaphragm, and shifts the focus.
When the stepper motor is moved back the pressure is released, and the focus shifts back.

The most important thing to note about the focus system is the focus motor position in milimeters does
not directly describe the position of the secondary mirror. Depending on the position of the zero-point, there
can be several milimeters of travel (typically ∼ 2− 3 mm) before the motor applies pressure to the diaphragm.
When pressure is applied, the focus changes. Around 1 mm from the initial pressure, the diaphragm cannot
be stretched further, and the motor will stop. When the focus motor stops off-target, schierd will log an
error and the system will shut down.

Once telescope alignment has been completed (if that is possible!) care should be taken to note both where
the focus motor engages the diaphragm, and where the maximum focus position is located.

6.2.2 The Basics

After various focus tests, we determined that the telescope focus depends on the temperature and the elevation.
There does not appear to be a focus dependence on azimuth, and hence all focus data is taken pointing south
or north. The final “focus model” is the term used for the parameters for a bilinear fit of the best focus as a
function of temperature and elevation.

During a focus run, (see Section 4.3.3 and Section 6.4), images are taken of a single field at regular focus
intervals. With a typical focus run, images are taken at a fixed azimuth and elevation several times during
the night.1 It is important to make sure the configured focus motor range covers both sides of focus for the
entire night. Also, any focus images taken while the motor has not yet engaged the diaphragm are not useful.

1Actually, the fixed azimuth and elevation refer to the field location at the start of the focus run. At the end of a ∼5 minute
focus run, the azimuth and elevation do change slightly.

55

56 CHAPTER 6. BUILDING A BETTER FOCUS MODEL

2.80 2.90 3.00 3.10 3.20 3.30 3.40
2

4

6

8

10

12

Figure 6.1: Plot of FWHM (pixels) vs. Focus Position (mm) for a sample focus run. The stars are the points
used to fit the parabola.

The quality of the focus is determined by the median of the central subregion full-width-half-maximum
(FWHM) measurements of the PSF made by SExtractor. For a given focus run, a parabola is fit to the plot
of FWHM as a function of focus position, as in Figure 6.1. The best focus is determined to be the minimum
of the parabolic curve. The error is determined to be the width at which the parabolic fit changes by 10%
from the minumum value.

When enough focus values have been tabulated for a range of temperatures and elevations, we can begin
a focus model fit. The model can be improved with more than one night of focus data to cover a wide
temperature range.

The focus model is created with a least-squares fit to the best focus as a function of temperature, elevation,
elevation squared, and the various cross terms. The idl program that performs this task is described in
Section 6.5.

The focus model implemented as described in Section 3.8.1 is flexible, and can handle any polynomial
combination of temperature, elevation, and azimuth, if such fits become desirable in the future.

6.3 Manually Monitoring the Focus Gradient

During testing, watching the focus gradient across the image is important. To this end I have written a utility,
focus gifs.pro, which generates a gif with the subimage in the four corners and the center, as well as a
measurement of the FWHM in these regions. This section describes how to use this program. However, the
exact plan to remove focus gradient has not yet been determined: is it camera tilt, secondary tilt, corrector
tilt, or something else? A neverending work in progress...

1. Take a focus image(s) with rush, while the sexpacman pipeline is running.

See the rush documentation in Section 2.5 for more information.

2. In the pipeline parent directory (/rotse/data/pipeline/), create a listfile of the images you wish to
monitor.

$ cd /rotse/data/pipeline/

$ ls color=never image/filename.fit > file.list

6.4. SETTING UP AN AUTOMATED FOCUS RUN 57

3. Start up idl in the /rotse/data/pipeline/ directory, and run focus gifs.pro.

$ idl

IDL> focus gifs,’file.list’

4. Open a separate terminal, and go to /rotse/data/pipeline/image/ to view the gifs.

$ cd /rotse/data/pipeline/image/

$ ee filename*.gif &

The Electric Eyes program (ee) has a useful slideshow option when multiple files are specified on the
command line. You can now page through the images, and watch the various subregions as the telescope
is brought through focus. If the various subregions go through best focus at significantly different focus
positions, something is out of alignment.

6.4 Setting Up an Automated Focus Run

The first time an automated focus run is performed, an entire night’s observing should be dedicated to the
focus procedure. Starting early is important to get a large temperature range through the night. Follow-up
focus runs should be performed when the nighttime temperature changes significantly, for greater coverage of
the temperature domain.

Setting up a set of focus runs is easy in the scheduler:

1. Make sure a focus run item is defined in astrod.conf, as described in Section 4.4.1.

There should be a trigger sequence of the following form:

trigger focus run foc 0 fr

2. Set the focus run parameters in astrod.conf, as described in Section 4.4.2.

The configuration parameters foc lim and foc step determine the range and stepsize for the focus run.
Be sure that foc lim liberally covers both sides of focus (usually a range of 0.5 mm is necessary). A
stepsize of 0.02 mm should be adequate.

3. Put the following schedule items in astrod.conf:

sched focus run "-t 4 -p 1 -u -17.0 -c 120 -l 85.0 -a 180.0 -e 2000.0 -M 45.0"

sched focus run "-t 4 -p 1 -u -17.0 -c 120 -l 65.0 -a 180.0 -e 2000.0 -M 45.0"

sched focus run "-t 4 -p 1 -u -17.0 -c 120 -l 45.0 -a 180.0 -e 2000.0 -M 45.0"

sched focus run "-t 4 -p 1 -u -17.0 -c 120 -l 35.0 -a 180.0 -e 2000.0 -M 45.0"

sched focus run "-t 4 -p 1 -u -17.0 -c 120 -l 25.0 -a 180.0 -e 2000.0 -M 45.0"

By specifying azimuth (-a) and elevation (-l), we ensure that we fix the elevation (at the start of each
run) through the night. Specific fields specified by RA/Dec would drift through the night, making the
focus model calculation difficult.

In this focus sequence, each elevation is run 4 times (-t 4) during the night at 2 hour intervals (-c 120).
An elevation is skipped if the field is within 45◦ of the moon position. The sequence is started when the
sun is 17◦ below the horizon.

6.5 Constructing a Focus Model

Once an automated focus run has been performed as in Section 6.4, a focus model (described in Section 6.2.2
can be constructed. This is accomplished with the idl program find focus3.pro, which returns a structure
with the best focus positions (for debugging purposes), as well as plotting the linear fits to the screen and
printing to the terminal the constants for the focus model.

58 CHAPTER 6. BUILDING A BETTER FOCUS MODEL

1. Go to the pipeline directory (or the directory that contains corresponding image/ and prod/ subdirec-
tories with the appropriate image and header files) and create a list of the focus images.

$ cd /rotse/data/pipeline/

$ ls --color=never /rotse/data/pipeline/image/date foc*.fit > focus.list

2. Start idl and run find focus3.pro.

$ idl

IDL> find focus3,’focus.list’,best focs

MRDFITS: Binary table...

...

3. As it is processing, fits like that in Figure 6.1 are plotted. After each plot, the user is asked to confirm that
the program has found a good fit. This helps reduce problems from cloudy data and other systematics.

4. When it completes, a residual plot like that in Figure 6.2 is made. The focus model constants (and
configuration file abreviations) are also printed:

...

Offset ("1") : 3.4426761

Elev ("e") : -0.0068352453

Elev^2 ("ee") : 3.2436731e-05

Temp ("t") : 0.0044962081

Temp-Elev ("et") : 5.8851819e-05

Temp-Elev^2 ("eet"): -2.4983650e-07

5. Put these constants into a focus model file as described in Section 3.8.1.

6.5. CONSTRUCTING A FOCUS MODEL 59

Residual as a function of Temperature

48 50 52 54 56 58
Temperature

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

R
es

id
ua

l

Residual as a function of Elevation

20 40 60 80 100
Elevation

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

R
es

id
ua

l

Figure 6.2: Plot of focus residuals as a function of temperature and elevation.

60 CHAPTER 6. BUILDING A BETTER FOCUS MODEL

Chapter 7

Image Correction and Calibration
Images

7.1 Introduction

Fast, on-line image correction and calibration is the key for the success of the ROTSE-III program. In this
chapter I describe our current strategy for creating calibration frames (darks and flats), as well as using
these calibration images quickly in an on-line pipeline. A full discussion of the online analysis pipeline, is in
Chapter 8.

The ROTSE-III system runs with an unfiltered, thinned CCD. This, combined with the wide-field, creates
difficulties in getting good quality flat-field images. Not only do we have to deal with the vignetting from
the wide-field and the pixel-to-pixel quantum efficiency variations,1 strong night-sky emission lines create an
unpleasant interference fringe pattern in the images. The final plan for obtaining flat-field images will most
likely change from the process currently described in this chapter.

For use in the automated pipeline, calibration files are put in the directory:
/rotse/data/pipeline/cal/

7.2 Dark Images

7.2.1 Obtaining Dark Images

Dark images are a measure of the dark current in the CCD at a specific temperature for a specific exposure
length. Due to the bias level and read noise, it is difficult to scale one dark exposure to another exposure length.
Dark images are therefore taken at each of the configured exposure lengths described in Section 4.3.2. Dark
images are subtracted from image frames to remove the bias level, the dark level, and to subtract hot pixels
to improve photometry. We also plan to use dark frames to create a hot pixel map to flag false identifications
from hot pixels.

Dark images are obtained by the automated scheduler astrod. The ndarks configuration parameter
(Section 4.3.3) describes the number of darks taken at each exposure length. The default is 6. In addition, a
dark run must be scheduled, as described in Section 4.4.2. One dark run per night should be fine for normal
operation.

7.2.2 Creating a Median Dark

Once a set of dark images are obtained, the next task is to create a median dark image from the frames. This
is accomplished by the perl script makedark. Running makedark is easy:

$ cd directory with darks ; Usually /rotse/data/3a1/

1We do not believe that intra-pixel variations of qe should hurt us. [why?]

61

62 CHAPTER 7. IMAGE CORRECTION AND CALIBRATION IMAGES

$ makedark
This script will median all the darks of similar
type located in the directory given as the argument. A
specific type can be specified if desired.

Usage: makedark -d darkdir [-t datestr]
$ makedark -d .

makedark thens scan through the directory specified (usually the current directory), groups the dark frames
by temperature and exposure length, takes the median of the dark images to create a dark with the filename of
the form: YYMMDD drk0200 3a.fit. (See Appendix A) The number after “drk” is the exposure time multiplied
by 10.

It is worth the time to take a look at the median darks with ds9 to check for any light leak problems, read
noise problems, or other systematics. Only good darks should be used in the automated pipeline.

7.3 Flat Fields

7.3.1 Twilight Flats

Currently, our best flat-field images are generated from twilight images. To create a twilight flat, we image
high elevation fields at twilight, away from the setting sun. We then take the median of these images to
remove the stars. Because the light in the twilit sky is dominated by scattered broadband sunlight, fringing
from strong night-sky lines is not evident.

A sample twilight flat is shown in Figure 7.1. Along with the vignetting (on the order of ∼10%), other
features can be seen that appear to be real.

Scheduling a Twilight Flat

Creation of a twilight flat requires a clear, moonless twilight period. Here I describe the scheduling parameters
necessary to create a twilight flat. For more details on using the scheduler, see Chapter 4.

1. Check that a twilight flat trigger is defined in astrod.conf, as described in Section 4.4.1.

trigger twi flat twi 0 1jm

2. In the schedule list, add the following lines:

sched twi flat "-t 5 -u -10 -a 90.0 -l 70.0 -e 2000.0 -i 5"

sched twi flat "-t 5 -u -10 -a 88.0 -l 70.0 -e 2000.0 -i 5"

sched twi flat "-t 5 -u -10 -a 86.0 -l 70.0 -e 2000.0 -i 5"

sched twi flat "-t 5 -u -10 -a 92.0 -l 70.0 -e 2000.0 -i 5"

sched twi flat "-t 5 -u -10 -a 94.0 -l 70.0 -e 2000.0 -i 5"

sched twi flat "-t 5 -u -10 -a 90.0 -l 72.0 -e 2000.0 -i 5"

sched twi flat "-t 5 -u -10 -a 90.0 -l 68.0 -e 2000.0 -i 5"

sched twi flat "-t 5 -u -10 -a 92.0 -l 68.0 -e 2000.0 -i 5"

sched twi flat "-t 5 -u -10 -a 94.0 -l 72.0 -e 2000.0 -i 5"

sched twi flat "-t 5 -u -10 -a 88.0 -l 72.0 -e 2000.0 -i 5"

The first several images will probably be saturated. This is not a problem, as there are plenty to go
around. We will need at least 30 to create a decent twilight flat. Each field is imaged once with a
medium length (20 s) exposure, and the telescope returns to the same azimuth and elevation after at
least five minutes. This allows the stars to drift so we do not image the same stars in the same pixel from
image to image. I’m not sure if the azimuth should be changed from ∼ 90◦ to ∼ 270◦ for the southern
hemisphere.

7.3. FLAT FIELDS 63

Figure 7.1: A sample twilight flat. The diagonal lines appear to be real variations in the flat.

64 CHAPTER 7. IMAGE CORRECTION AND CALIBRATION IMAGES

3. On a clear, moonless twilight, run the system.

It is important that these images are taken on schedule. If they are taken late, the night sky lines will
dominate and you will end up with a sky flat (see Figure 7.2) instead of a twilight flat.

Making a Twilight Flat

There is a handy perl script called makeflat3 that creates a median flat from a list of images. The program
automatically normalizes each image from its central subframe to ensure that changing background light levels
(due to the darkening of the sky at twilight) do not systematically bias the flat. makeflat3 requires that a
median dark image from that day’s output is in the current working directory. If a current dark is not present,
we can create a pointer to an archived dark. Following the directions here:

NOTE: The instructions for this section need to be checked when we make another flat...I’m not sure which
version of makeflat is the one that works!

1. Ensure that a present day 20 s dark is available. If it is not available, either make one as described in
Section 7.2 or create a link to an archived dark.

$ ls /rotse/data/pipeline/cal/ ; Is today’s dark there?

...

$ cd /rotse/data/pipeline/cal/

$ ln -s today drk0200 3a.fit old drk0200 3a.fit

$

2. Check the makeflat3 syntax.

$ makeflat3

Usage: makeflat -d flatdir [-f framenum -t datestr -r darkdir -n namestr -c]

3. Run makeflat3 on the data.

$ makeflat3 -d /rotse/data/pipeline/image/ -t today -r /rotse/data/pipeline/cal/ -n twi

...

This should take a few minutes. Please note the specification of the twi TLA, which is the standard for
twilight flats. This should be substituted when running other flats.

7.3.2 Sky Flats

A sky-flat image is generated from all-sky imaging data, typically in conjunction with the building of a pointing
model as in Section 5.4. A typical sky-flat, as shown in Figure 7.2, is a convolution of the “real” twilight flat
with a fringing pattern, described in Section 7.3.3.

Making a Sky Flat

The procedure to create a sky flat is similar to that mentioned above in Section 7.3.1:

1. Run an all-sky imaging sequence. A pointing model sequence as described in Section 5.4 works well, if
taken when the moon is set.

2. Ensure that a present day 20 s dark is available. (This is the standard exposure length for the tpt
pointing data).

3. Check the makeflat3 syntax. Here we will use it in a slightly different way.

$ makeflat3

Usage: makeflat -d flatdir [-f framenum -t datestr -r darkdir -n namestr -c]

7.3. FLAT FIELDS 65

Figure 7.2: A sample sky flat. The fringe pattern from the night sky lines is clearly evident.

66 CHAPTER 7. IMAGE CORRECTION AND CALIBRATION IMAGES

Figure 7.3: A sample fringe map. The image has been arbitrarily normalized. This pattern is consistent from
image to image, although the normalization changes.

4. Run makeflat3 on the data.

$ makeflat3 -d /rotse/data/pipeline/image/ -t today -r /rotse/data/pipeline/cal/ -f 001
-n tpt

We must specify that we only wish to use the first frame (001) of each pair. We do not want to use pairs
of images, as the stars land on the same pixels in image pairs, thus biasing the median.

7.3.3 Fringe Maps

One of the unfortunate aspects of a thinned CCD is the problem of interference fringes. When light of certain
wavelengths hit the CCD, some of the light is reflected and interferes with itself. The scale of the fringe pattern
is wavelength dependent, and like the rainbow on an oilslick, you get a fringe pattern like that in Figure 7.3.

The night sky is the greatest source of this fringe pattern. Because most of the night sky brightness is
contained in certain emission lines, some of these lines create a strong fringe pattern. Light from the sun,
moon, and stars are broadband, and so will not show the fringe pattern. However, since we are running an
unfiltered system, the fringing subtly effects the photometry of the stars in unpredictable ways.

One cannot leave the fringe pattern in the sky flat, as in Figure 7.2, as this would amplify the effect of the
fringing on the photometry. At the moment, we have decided to find the fringe scaling factor and subtract
the fringe pattern. This helps, but is not perfect. One solution (to many problems!) would be running with
an R-band filter, but this would greatly decrease our sensitivity to faint sources.

Making a Fringe Map

A simple program to make a fringe map has not yet been written. I promise I will do this when the telescope
is back. It is actually quite easy, you just take the sky-flat and subtract the twilight flat, set the median to 0,

7.4. UPDATING THE AUTOMATED PIPELINE FILES 67

Figure 7.4: A plot of typical image values vs. fringe map values. The higher image values typically correspond
to higher fringe map values. The slope of the line gives the fringe scaling factor, and the fringe map is then
subtracted from the image.

and normalize it. You end up with something like Figure 7.3.

7.3.4 Fitting the Fringe Map

To remove fringing from the images, the fringe pattern must be scaled and subtracted from the image. The level
of fringing depends on the sky brightness, lunar illumination, and cloud cover, and an analytical calculation
for the fringe level is not possible. At the moment we have implemented a simple linear fit to find the fringe
scale.

The image pixel value is plotted against the fringe map pixel value for the central subregion of the image,
as in Figure 7.4. Some of the image pixels contain starlight, so the image values are cropped at the 3σ
level, creating the sharp cutoff at the top of Figure 7.4. Under ideal circumstances, the brighter sky values
correspond to the higher fringe map values, and a simple linear fit determines the fringe scale. If there is a
strong sky gradient across the image, as when the moon is bright and nearby, this can produce a false fit. At
the same time, the bright broadband moonlight tends to wash out the fringing pattern. Our fringe subtraction
technique might need to be improved to achieve our desired photometric accuracy for faint stars.

7.4 Updating the Automated Pipeline Files

How often should the calibration frames used in the automated pipeline be updated? Good question. Our
current plan has new calibration frames to be obtained on a monthly basis, or after any telescope alignment
change. When we have a good schedule plan in place, we will describe it right here.

68 CHAPTER 7. IMAGE CORRECTION AND CALIBRATION IMAGES

7.5 Performing Image Correction: corr im fast and new dfc

7.5.1 Introduction

The old ROTSE-I image correction was handled by a perl script called corr image that was very slow. The
guts of corr image have been replaced by a C program called new dfc (From New Dark-Flat-Crop) which
uses the cfitsio library for faster fitsfile processing. The new corr im fast perl script is a wrapper for this
program.

7.5.2 What corr im fast Does

This is a short description of the steps that corr im fast takes. Further details can be gleaned from the perl
script itself.

1. corr im fast is provided with directories for image and calibration files. For more information on the
command line, see Section 8.2.1.

2. It scans the calibration directory for the best dark image. This image must have the same exposure time
as the data image, the date must be on or before the data image, and the camera temperature must be
within 2◦ of the data image.

If a proper dark is not found, the program will exit with an error.

3. It scans the calibration directory for the best flat image. This image must have been taken with data
on or before the date of the data image.

If a proper flat is not found, the program will exit with an error.

4. It checks which amplifier (or both) was used with the image to determine the proper image cropping
parameters. The cropping removes the bias areas and leaves only image data.

5. It runs new dfc.

7.5.3 What new dfc Does

This is a short description of the steps that new dfc takes.

1. new dfc must be provided with the image, output file, flat, dark, fringe map, and thumbnail file names.

2. The program first subtracts the dark frame from the image.

3. It next divides the image by the flat-field image to remove vignetting and account for interpixel sensitivity
variations.

4. It next scales the fringe map as described in Section 7.3.4, and subtracts the scaled fringe map.

If the fringe map fit is considered to be “bad,” (the χ2/d.o.f. > 2), then the fringe map is not subtracted
and this is noted in the FITS header. (See Section C.2.)

5. It next crops the image as defined on the command line. The cropping algorithm is flexible enough to
handle a central bias region that results from dual-amplifier readout.

6. The program now “compresses” the image with the FITS standard b-zero and b-scale parameters, to
change the image from a 32-bit floating point image to a compressed 16-bit integer image, as described
in Appendix B.1.

7. A thumbnail jpeg image is created for easy display on the web page. The typical thumbnail is 8 k.

8. The program exits and returns to corr im fast.

All the operations performed to correct an image are recorded in the FITS header. It will soon be possible
to reverse the correction process, however, with a loss of bias region information.

For more details on running the correction software, see Chapter 8.

7.6. UNCORRECTING IMAGES: UNCORRECT 69

7.6 Uncorrecting Images: uncorrect

At the current moment, we plan to archive only the corrected data and the calibration files. The image
correction process is completely reversible, with the exception that the bias information is lost. The bias
subframe statistics are retained in the image header, described in Section C.1.

The program uncorrect performs the uncorrection procedure. It is run as follows:

$ uncorrect
usage: uncorrect -i filename [-o outfile] [-C caldir] [-c subr x -d subr y -m xmask]

uncorrect will only use the dark, flat, and fringe files that are explicitly named in the corrected image
header. The path to these files defaults to the paths specified in the header, or can be overridden with the -C
option. The output file defaults to the image root with a raw.fit extension, so as to distinguish it from the
true uncorrected file. The subregion cropped from the original defaults to that specified in the header [need to
write this!] or the default cropping from corr im fast. This program is fairly fast, but if the online analysis
works as planned we should only need to run this program infrequently.

70 CHAPTER 7. IMAGE CORRECTION AND CALIBRATION IMAGES

Chapter 8

Realtime Data Analysis and
Monitoring Telescope Operations

8.1 Introduction

Once the telescope is configured, scheduled, aligned, and focused, normal operations can commence. ROTSE-
III is designed to be an automated, robotic telescope; most nights, it should take hundreds of images without
necessary human intervention. Once the images are recorded, there is a suite of analysis programs to extract
useful information from these images. Ultimately, we hope to make a full closed-loop automated analysis
program, in which the automatic software processes the results gleaned from images to instruct the daq in the
scheduling of future images, as well as to distribute discovery alerts, but for the moment, only some of this
process is fully automated. The entire analysis pipeline sequence is diagrammed in Figure 8.1. In this chapter,
we describe the automated analysis code and resulting data products, a few steps that must be performed
manually after the automated steps are complete, and the methods we have established to monitor system
behavior during operation.

We have written several sets of programs to analyze ROTSE-III data as it is recorded to disc. These
programs in concert provide calibrated object lists for observed fields. After a GRB alert has been received, sets
of object lists for multiple observations of the target field are automatically compiled into “match structures”.
These match structures enable us to track the change in intensity of all objects in the field. They can be easily
scanned for highly variable objects, as a GRB is expected to be, and they are a useful tool for weeding out
spurious artifacts that only appear in a single image. Although match structures are produced in response
to a GRB alert, the primary output of the automated realtime processing is the calibrated object list, so we
describe in Section 8.2 how these lists are created, and defer all discussion of match structures to Section 8.3,
when the manual manipulation of data products is described.

8.2 Realtime Automated Analysis

There are two programs that act in tandem to produce calibrated object lists, and they are referred to as
“pacman” programs, because they “eat” one file at a time as they are produced during the analysis process,
in analogy to the arcade game figure that eats a row of little pellets.

The process begins when camserverd records a new image to disc and creates a link to that image file
in the specified link directory (Section 1.2.4). A Perl script called sexpacman.pl monitors that directory for
new links, and when one appears, it corrects the image with the available dark- and flat-fields, and processes
the result through SExtractor to produce a list of objects in the field. This list is called an sobj file.
sexpacman.pl then adds the name of the sobj file to a list of other sobj files, sorted according to priority
(most images are processed chronologically, but GRB follow-up images outrank other images, and prompt
burst images outrank late-time follow-up images. See the explanation for the scheduler in Section 4.3.4 for
more information on these triggers.).

71

72 CHAPTER 8. REALTIME DATA ANALYSIS AND MONITORING TELESCOPE OPERATIONS

The list of sobj files is monitored by an idl process called idlpacman.pro, hereafter referred to simply as
idlpacman. The first file in the list is read by idlpacman and calibrated against the USNO A2.0 catalog to
produce a list of estimated R-band magnitudes and celestial locations for these sources. These lists are called
cobj files. The name of the processed sobj file is removed from the list, and idlpacman moves to the next file
name on the list, or waits for a name to be added, if no more are present. The time elapsed to the creation
of a calibrated object list is typically 45 s from the first appearence of the raw image.

8.2.1 sexpacman

The Perl script sexpacman.pl takes one argument on the command line: the configuration file name (usually,
but not necessarily, called sex.conf). The default command has been aliased to startsexpac, which also
writes any output to a file sexpac.log for later inspection (See also Section 2.3.3). This script will run in an
infinite loop, and the configuration file consists of a list of directories where it should look to find the particular
files it needs. Here is an example of what such a file should look like:

This is a configuration file for sexpacman.pl
#
linkdir /rotse/data/3a1/links # directory for image links
listfile /rotse/data/pipeline/sobjlist # file for the output list
sobjdir /rotse/data/pipeline/prod # directory for sobj files
cimdir /rotse/data/pipeline/image # directory for c files
datdir /rotse/data/pipeline/cal # directory for raw image files
caldir /rotse/data/pipeline/cal # location of darks and flats
thumbdir /rotse/data/pipeline/thumbs # directory to put thumbnail JPGs

In essense, sexpacman.pl is a wrapper program for corr im fast (Section 7.5) and SExtractor. It
periodically scans the linkdir (defined in the configuration file) for new links to ROTSE-III images, created
by camserverd (See Section 3.6). First, sexpacman.pl calls corr im fast to perform the dark- and flat-field
corrections. Once an c file has been created, sexpacman.pl calls SExtractor to process the corrected image.
The resulting output yields three files: a list of objects (called an sobj file), an image which contains a
measurement of the sky brightness of the image in a 64×64 grid (called a sky file), and a file (usually called
sobjlist) which is a list of the sobj files. This list file is monitored by idlpacman (Section 8.2.2) in order to
calibrate the source lists against the USNO A2.0 catalog.

The process also creats a small, “thumbnail” version of each image in JPEG format which is copied via
a cron job to the web server at UofM, and can be viewed in an archive on the web page at www.rotse.net.
The most recent thumbnail is also displayed on the front page at that web site, and can be viewed through
pressing a button on the real-time status monitor web page (Section 8.4.2). An example thumbnail is shown
in Figure 8.2.

8.2.2 idlpacman

We have a license for one run-time idl process per telescope control computer, so we have constructed an
idl data analysis program that can run with no command-line input. This program takes the source lists
that are output by SExtractor (sobj files) and calibrate them against the USNO A2.0 catalogue, producing
calibrated object lists. These lists, along with the corrected image headers and the sky files, are saved into
FITS files called cobj files. The idlpacman function is activated through the following command:

prompt%> echo idlpacman | idl

This command has been defined into an alias called startidlpac (See also Section 2.3.3), which also pipes the
output into a log file called idlpac.log, which can be inspected to monitor the program’s activity. idlpacman
looks for a configuration file in the current working directory. (See Section A.6 for the standard directories
for realtime operations.) This file must be called idlpac.conf. This file contains the names of the files and

8.2. REALTIME AUTOMATED ANALYSIS 73

Using SExtractor, sources are
identified and extracted from
the corrected image.

Source ExtractionCorrected Image

Images are automatically
dark and flat−field corrected.
Fringing is also removed to
the few percent level.

Data structures of calibrated
lists that allow identification
of spurious objects,

Match Structure

variables and transients.

Extremely variable objects, as GRBs
are expected to be, can be easily
flagged in the first few images.

If the images were taken for a GRB
alert, we go down. The steps directly
below are also run manually on
archived calibrated object lists.

DISCOVERY

Relative Photometry
Images are subdivided into a
grid, and bright stars within
each grid provide an array

all magnitudes are adjusted.
of magnitude offsets by which

ROTSE aperture magnitudes are
calibrated against the USNO

Calibration

A2.0 catalog and compiled into
lists.

For archived data, when time is not
pressing, we perform another step

Variability

Fork in the Road

ROTSE−III Data Analysis Pipeline

For prompt burst response images,
the system moves down and right

Figure 8.1: Flowchart depicting the ROTSE-III data analysis pipeline. Most of these steps have been imple-
mented in an automated realtime process. Based on the file names, the software decides how far to pursue the
analysis; prompt burst response data will be compiled into match structures and scanned for highly variable,
uncataloged objects. Object lists from other kinds of triggers are created and stored for future processing.
The relative photometry process is only intended to be run manually on these archived data.

74 CHAPTER 8. REALTIME DATA ANALYSIS AND MONITORING TELESCOPE OPERATIONS

Figure 8.2: Thumbnail image produced by the ROTSE-IIIa DAQ system during the systems operation testing
in October of 2001. The filename as well as the date are displayed on the image.

directories in which idlpacman will find its input and write its output. Here is an example of a potential
idlpac.conf file (the format does not support comments in the file):

sobjlist sobjlist
workdir /rotse/data/pipeline
sobjdir /rotse/data/pipeline/prod
cobjdir /rotse/data/pipeline/prod
imgdir /rotse/data/pipeline/image
statdir /rotse/data/pipeline/prod
statroot rotse3a

The parameters do not have to be in this order, but they must all be present. sobjlist is the output
file from sexpacman.pl that contains a list of the sobj files to be processed by idlpacman. workdir is the
working directory for the process (might be, but not necessarily, the directory from which is was called, which
is where idlpac.conf should be). sobjdir is the directory whence the sobj files are read, and cobjdir is
the directory where the cobj files are written. imgdir is where the original corrected images are stored.

The last two elements enable us to monitor the analysis status and image quality in near real time. Within
the statdir, a file called “[statroot] run.dat” is created that keeps a running log of various diagnostic
quanities: the image name, the time, the temperature, the difference between the catalog and ROTSE-III
positions of stars, the FWHM of the PSF, the elevation of the pointing direction, and the limiting magnitude
of the image. Four of these quantities are also graphed in a GIF image named status mon.gif, which is
regularly transferred to Michigan for display over the WWW (Section 8.4.2). Such an image is displayed in
Figure 8.3. The log file is also used by the mount in its homing operation, see Section 3.8.

8.2. REALTIME AUTOMATED ANALYSIS 75

Figure 8.3: Four status variables are displayed graphically for near-real-time viewing over the WWW. Clock-
wise from top left: the median FWHM as a function of temperature, the image limiting magnitude as a
function of time, the median FWHM as a function of elevation, and the pointing offset between mount and
true coordinates. In the bottom figures, the most recent data point is plotted in red. These graphs help us
determine when problems arise during the night, as might be evidenced by a drift in the pointing accuracy or
a dramatic change in the limiting magnitude (which usually indicates clouds).

76 CHAPTER 8. REALTIME DATA ANALYSIS AND MONITORING TELESCOPE OPERATIONS

8.2.3 Burst Response Analysis in Real-time

If idlpacman recognizes the image under analysis as an image taken in response to a realtime burst alert
(from the three letter acronym in the file name – see Appendix A), it performs additional operations to those
outlined in the previous section. This procedure is still evolving, but currently involves compiling match
structures, writing short binary files with information about sources of interest near the burst location, and
cropped JPEG images of the region. These small files are updated after every ten images, and copied back to
www.rotse.net/burst response/ for remote perusal by interested users.

8.3 Manual Data Analysis

8.3.1 Creating Object Lists Manually

Should you wish to run sexpacman.pl manually, you can set the configuration file to point to directories
that contain archival data, and set up a number of symbolic links to the image files you wish to analyze.
sexpacman.pl is smart enough to skip the field correction if the link contains an c element in its name.
When all the links have been processed, you can kill the sexpacman.pl process. Alternately, you can run
corr image and SExtractor on each image file yourself. To do so, you will need to have the EXTRACT PAR
and EXTRACT CONFIG environment variables defined to point to the directories where the rotse3.sex
and rotse.par files are located. These files define the paramaters for SExtractor’s analysis and the output
format, respectively.

The function calls look like this:

corr im fast -d [linkdir] -i [image name] -r -f -b -c [caldir] -t [cimdir] -C -F fringe.fit
-T -H [thumbdir]

sex [file] -c [EXTRACT PAR]/rotse3.sex -PARAMETERS NAME [EXTRACT PAR]/rotse.par
-FILTER NAME [EXTRACT CONFIG]/gauss 2.0 5x5.conv -CATALOG NAME [sobj file name]
-CHECKIMAGE NAME [sky file name]

Similarly, if you create a list of sobj files and the appropriate idlpac.conf file, you can run idlpacman
on any set of archival data to create cobj files as well as the associated log file of diagnostic parameters and
the status mon.gif image.

8.3.2 Match Structures

Once more than one calibrated list for a given field is available, these lists are compiled into a “match
structure”; a data structure that enables us to monitor the intensity variations of celestial objects, as well
as filter out candidate objects that do not appear at the same location in sequential observations. Although
match structures are automatically produced for sets of images taken in response to GRB alerts received over
the GCN, they are primarily constructed manually, often combining many days’ of sky patrol data to create
light curves for the sources within the wide-field survey region. In this section, we summarize the properties
of match structures and describe how to create them.

A match structure identifies objects by matching their celestial coordinates from observation to observation.
The telescope aspect is shifted through a small, random vector between observations. This ensures that hot
CCD pixels and cosmic ray events are unlikely to be mistaken for celestial objects, as their CCD locations will
change relative to the sky. One can then apply a relative photometry algorithm (Section 8.3.3) to stabilize the
magnitude estimates and calibrate the systematic errors. This reduces the scatter in light curves for stable
bright objects to <1%, and allows us to reliably identify variable sources. We can also flag known distractions
such as asteroids (that move from night to night) and “masked” stars (stars that appear in ROTSE images
but are too close to bright stars for sensitive cataloged surveys to resolve).

Match structures are saved in FITS files that consist of two extensions: the first extension contains the
match structure itself; a structure of arrays that hold astrometric, photometic and ancillary data about the
sources within the field of view (for the gory details of the contents of match structures, see Section C.5). The
second extension contains a array of structures that carry all the information from the header of each cobj

8.3. MANUAL DATA ANALYSIS 77

file, preserving information about the original image from which it was produced, as well as which processes
were run in order to create it (Section C.4).

A match structure consists of a set of arrays that contain information on each object per observation (like
magnitude), as well as some mean properties of each object over all observations (like celestial location), and a
few quantities that apply to each observation (like limiting magnitude). These arrays are defined in Table C.3.
As each new calibrated object list is added to the match structure, each array is expanded to include the new
data. Object magnitudes are copied from the cobj file. A −1 is assigned as the magnitude if an object already
in the match structure is not detected in the new list. If a known object is outside the field of the new image,
a −2 is assigned. As new objects are added to an existing list, their magnitudes in prior observations are also
assigned values of −1 or −2, as appropriate. Mean and RMS quantities are recalculated as each observation
is added.

The primary program to construct a match structure is regmatch3 list.pro. There is another program,
update match.pro, which is intended to process large numbers of fields into sets of match structures. The
main workhorse, regmatch3 list.pro, is a flexible program that is called with this sequence:

IDL> regmatch3 list, match, stat, list=list, namelist=namelist, pair=pair, limits=limits,
save=save, over=over, append=append, archive=archive, error=error, template=template

The final match structure is stored in match, and an array of structures that convey the header variables for
the included observations is stored in stat. Either list or namelist must be set. The former is a single
string: the name of a file that contains the list of the cobj files to be included. The latter is an array of strings
in which each element is the name of a cobj file.

The other variables and keywords are optional. /pair will activate pair-matching: that only objects that
appear in sequential pairs of images are included1. If this option is activated, the program expects an even
number of cobj files. If an odd number is input, the last will be ignored and an error will be logged. If
/append is activated, the program will assume that match is not empty to begin with, and the cobj files in the
list will be appended to what is already in match. limits is a four-element array that gives the coordinates
of a limited region ([R.A. min, R.A. max, Decl. min, Decl. max]), if the whole field is not desired. Sources
outside these limits will be discarded. template is an array of coordinates for sources of interest. Sources
whose celestial locations in the cobj files do not match any coordinates in template will be discarded.

The other keywords instruct the program what to do with the match structure when it is complete. Files
are named according to the naming convention outlined in Section A.5. save will save the contents of match
and stat into a FITS file in the working directory, but not if a file of that name is present already. over
will overwrite any currently present file with the same name. archive is the same as save, only instead of
the working directory, the standardized archival directory is used (see Section A.6). Saved match structures
are FITS files with two extensions. The first extension contains the match structure itself, while the second
contains the stats structure.

If you have a large number of images from different fields that you would like to compile into match
structures, update match.pro may be more useful. It is called as follows:

IDL> update match, all, dir=dir, pair=pair, archive=archive, startroot=startroot, sky=sky,
init=init, relphot=relphot, matchdir=matchdir

The first variable, all, is a required output variable. When the program exits, the file names (minus the first
and fourth name extension, see Appendix A) will be stored as a string array in this variable. If startroot
is defined (it should be an array of strings), only files whose root names match the elements of this array
will be considered. If /sky is set, only Sky Patrol images will be processed. Otherwise, all images in any
subdirectories of the working directory will be processed. If dir is defined, the working directory is changed to
dir before beginning. The final match structures are saved as defined above in the working directory, unless
/archive is set, in which case they will be saved in the standardized archival directory (if you don’t want
them to go in either the working directory or the archival directory, you can define an output directory with
matchdir). If /init is set, the program will start from scratch, otherwise it will look to see if match structures
already exist, and will only append new files to them if they are not already included. If /relphot is set, the
program will also apply the relative photometry procedure, as described in Section 8.3.3.

1Not any sequential order is acceptable in pair-matching. Images must be odd-even sequentially indexed.

78 CHAPTER 8. REALTIME DATA ANALYSIS AND MONITORING TELESCOPE OPERATIONS

8.3.3 Relative Photometry

A match structure as described above is not yet finished. To minimize systematic errors in source intensities,
it is helpful to perform a “realtive photometry” procedure to remove photometric mismeasurements due to
such difficulties as the presence of thin haze over a portion of a frame, poor fringe subtraction (Section 7.3.3),
etc. The idl program relphot3.pro will perform this procedure. For each object in each observation,
relphot3.pro determines a small relative photometric correction, or in more extreme situations calculates a
systematic error and sets flags to specify the problem and allow one to exclude the affected regions.

The program begins by selecting a set of good template sources in each matched list. To qualify as a
template source, an object must be detected in more than 75% of the epochs at which the source location
was imaged. Next, the median magnitude of all good observations of the template objects is calculated. Each
image is then divided into subtiles, 200 pixels on a side, and a photometric offset are calculated for each
template source, grouped by subtile, that has a statistical uncertainty in its magnitude measurement less than
0.1 mag. The number of template sources within a typical subtile is ∼ 50. The relative photometry map is then
calculated to be the array of median offsets for each subtile. The RMS deviation of the offsets in each subtile,
which for good subtiles is typically around 0.03 mag, is used to estimate the systematic error. In addition, a
subtile is classified as “bad” if there are less than five template sources within it, or if the RMS deviation of
the template offsets is greater than 0.1 mag. Each magnitude measurement of each object in each observation
is then corrected by the offset map using a bilinear interpolation, and the new systematic error estimate is
added in quadrature to the previously estimated systematic error for each object in the observation. If the
subtile is flagged as bad, then the object’s observations are likewise flagged (flags are defined in Table C.2).

The function call for this procedure is:
IDL> relphot3, match, newmatch, rpmap, stat=stat, save=save, archive=archive, over=over,
init=init
The variable match contains the input match structure (or it may also be the file name of a FITS file containing
a match structure), while newmatch is where idl will put the corrected match structure. If the match variable
is a match structure, then the stats variable must be set to the array of cobj header structures (Section 8.3.2)
that was created with that match structure. If the match variable is a file name, the array of structures in
the second extension will be read into the stat variable. The variable rpmap is a structure that contains the
map of offset values as well as several diagnostic parameters. This structure is defined in Section C.6, and it
is saved as the third extension to the relmat FITS file (Section A.4).

The application of the save, archive, and over keywords are the same as with regmatch3 list.pro,
above. If init is set, then the program will blindly apply the procedure. Otherwise, it will check to make
sure the procedure has not already been applied to match, and exit with a warning if it seems that relative
photometry is not necessary in this case.

8.4 Operational Status and Monitoring

The procedure for configuring, starting, and running a ROTSE-III telescope are described in Chapters 2, 3,
and 4. Once you have a evening’s session underway, there are several ways to stay in touch with what the
system is doing. If one has the access capability one can, of course, log in as observer and check the .log files
that are produced by the daemons rotsed and astrod (Sections 1.2.1 and 1.2.8), or look at the data files
being produced. However, there are other methods to be aware of what the system is up to that do not require
logging into the control computer. A program called rotsepager monitors GCN activity and distributes alerts
when events of interest occur. Also, rotsed (Section 1.2.1) provides up-to-the-minute status reports that can
be viewed over any WWW browser. We describe these programs in this section.

8.4.1 rotsepager

This program is run on rotse1.physics.lsa.umich.edu (the same computer that hosts www.rotse.net,
see below) by the rpager account. It establishes its own connection to the GCN network and is primarily
responsible for alerting members of the ROTSE team to the distribution of GCN alert messages. It processes
the GCN packets and applies a set of filters to determine whether the target coordinates for the alert are visible

8.4. OPERATIONAL STATUS AND MONITORING 79

from each ROTSE-III site (it takes weather into account by scanning the JavaScript status files described in
Section 8.4.2).

The configuration file, pager.conf, allows each user to determine which messages he or she wishes to
receive and to which address they should be sent. This file defines three global variables, and then contains
entries for each user who wishes to receive pages. Here is a sample user entry:

active 1 # 1/0 = on/off
owner somename # the holder of the pager
address someaddress@place.com # an email address for the pager
home somename@umich.edu # the home email address of the holder
sitemask 0x0001 # only look at Australia
statmask 0x0007 # check all status options
typemask 0x0001FFF0 # page on most useful trigger types

The three mask fields are bitmasks in hexadecimal format to allow the user to configure filter preferences.
The sitemask field identifies the sites for which the owner wishes to receive alerts. The active bits are defined
in Table 8.1. The statmask field indicates which status values should be checked before sending a pager.
Status mask bits are defined in Table 8.2. The typemask field identifies the types of GCN alerts for which the
owner wants to receive a page. Currently supported types are defined in Table 8.3.

As a self-diagnostic, rotsepager offers two types of special alerts that can be sent if you wish to remain
aware of its status. Since the GCN in normal operation sends an IMALIVE (Type 3) packet once a minute,
rotsepager will send out a page once a day at a particular time (this time is defined by the field dailysod
in the same pager.conf file) upon receipt of an IMALIVE packet within a minute of the designated time. In
case the connection go down, rotsepager keeps track of the time elapsed between the receipt of IMALIVE
packets, and should this time become larger than ten minutes, it will send out an alert that GCN activity has
ceased for ten minutes. Only one such alert will be sent. The user can decide whether to receive this alert as
an email or as a page. To configure this self-diagnostic, the user should set the appropriate bits2 as defined in
Table 8.3.

8.4.2 Realtime Status Monitoring over the WWW

There is a computer at UofM that is configured to act as a web server for the URL http://www.rotse.net.
Once a minute, a PERL script runs on this computer. It queries each ROTSE-III control computer in sequence
over a socket connection with the rotsed on each system. It extracts a packet of status variable values and
writes them to a local text file in JavaScript format. These variables give information about the state of the
entire telescope, which daemons are running, what alarms are currently active, what the weather conditions
are, and various header values from the most recent image recorded. The JavaScript files are accessed by the
web pages on our site in order to display up-to-the-minute tables of the system status. See Figure 8.4 for an
example of what an active display might look like.

Along with the JavaScript status variables, we also copy the thumbnail images that are produced by
sexpacman (Section 8.2.1), as well as the analysis status monitor GIF file produced by idlpacman (Sec-
tion 8.2.2). These images can be accessed through the pushing of buttons on the status display table page, as
shown in Figure 8.4. Figure 8.2 shows a typical thumbnail, and Figure 8.3 shows an example of an analysis
status image.

Upon receipt of a pager alert message from rotsepager, you may wish to monitor telescope response by
periodically reloading http://www.rotse.net/burst response/, which is automatically updated by software
both at the site and on rotse1. These pages will contain tables listing any uncatalogued or highly variable
sources near the published GRB position, along with light curve plots and cropped images for each obser-
vation. The presence of a candidate GRB counterpart should be immediately obvious from these data. See
Sections 8.2.3 and 8.4.1 for more information.

2Unless you really, really want them, I recommend leaving type 2 off

80 CHAPTER 8. REALTIME DATA ANALYSIS AND MONITORING TELESCOPE OPERATIONS

Figure 8.4: Sample window for a WWW display of current ROTSE-IIIa system status. This display is
somewhat outdated. The most recent version also includes a button to display the analysis status figure (as
shown in Figure 8.3) as well as the most recent thumbnail (Fig. 8.2). The contents of the table have been
expanded and made more intelligent as well; some parameters are only shown if they take on “interesting”
values.

8.4. OPERATIONAL STATUS AND MONITORING 81

Bitmask Meaning
0×0001 Accept alerts for Australia
0×0002 Accept alerts for Namibia
0×0004 Accept alerts for Turkey
0×0008 Accept alerts for Texas
0×0010 Accept alerts for Maui

Table 8.1: Bitmasks for the ROTSE-III sites.

Bitmask Meaning
0×0001 Check the weather status
0×0002 Check the clam shell status
0×0004 Check the camera status

Table 8.2: Bitmasks for status to check.

Bitmask Meaning
0×0001 Daily I’m Alive Pages
0×0002 Socket Down Notification
0×0004 ALL Types (does not include daily alerts or error notification)
0×0008 Test Alerts: Types 2, 44, and INTEGRAL Tests. Not recommended.
0×0010 Type 27: RXTE–PCA GRB
0×0020 Type 29: RXTE–ASM GRB
0×0040 Type 39: IPN Position
0×0080 Type 40: HETE–ALERT
0×0100 Type 41: HETE–UPDATE
0×0200 Type 42: HETE–FINAL
0×0400 Type 43: HETE–GROUND
0×0800 Type 45: GRB CNTRPART
0×1000 Type 51: INTEGRAL–POINTDIR (No GRB information)
0×2000 Type 52: INTEGRAL–SPIACS (GRB Timing information only)
0×4000 Type 53: INTEGRAL–WAKEUP
0×8000 Type 54: INTEGRAL–REFINED
0×00010000 Type 55: INTEGRAL–OFFLINE

Table 8.3: Bitmasks for the types of ROTSE-III alerts.

82 CHAPTER 8. REALTIME DATA ANALYSIS AND MONITORING TELESCOPE OPERATIONS

Chapter 9

Troubleshooting

9.1 Introduction

In this chapter I describe various possible failure modes of the ROTSE-III system, and what to do about
them. Please report all bugs to the authors. This is by no means a comprehensive list of all permutations and
combinations of things that can (and sadly, will) go wrong, but it will grow as more problems are found, and
shrink as certain problems are fixed.

Please read Section 9.2 first, as it contains helpful wisdom to isolate the problem, which (hopefully) will
be discussed in one of the following sections.

9.2 Tips and Tricks

The essential logfile in the ROTSE-III system is the system logfile /var/log/rotse.log. Use tail -f to
watch the file go by, and less to explore it in more detail if the system has gone down.

When the system shuts down (either intentionally or unintentionally) all the daemons receive a SIG: 15,
which is the standard Linux TERM signal. Seeing all the daemons report that they got SIG: 15 is normal. We
will need to find out which daemon started the avalanche.

To isolate the offending daemon, start at the end of the logfile (in less, the > command goes to the end)
and search backwards for which daemon timed out. This can be accomplished by doing a backwards search
in less, with the ?timeout command. You will see output similar to the following:

...
Aug 12 21:14:50 rotse3a schierd: Non-0 when resp = @Status2RA0000, 0003, 0000 39B3
Aug 12 21:14:50 rotse3a schierd: error bit 3 set on axis 0
Aug 12 21:14:53 rotse3a schierd: @RecentFaults Axis 1 High Output 8/12/2002, 20:19:36.277;
Aug 12 21:14:53 rotse3a schierd: MOUNT ERROR: Running error recover()
Aug 12 21:14:53 rotse3a schierd: Brake on axis 0
Aug 12 21:14:53 rotse3a schierd: Drive amp disabled on axis 0
Aug 12 21:14:53 rotse3a schierd: Reset failed.
Aug 12 21:14:53 rotse3a schierd: unrecoverable error
Aug 12 21:14:53 rotse3a schierd: begin shutdown, errno: Interrupted system call
Aug 12 21:14:53 rotse3a schierd: Clearing mount command...
Aug 12 21:14:53 rotse3a schierd: Sending carriage return
Aug 12 21:14:53 rotse3a schierd: closing mtfd
Aug 12 21:14:53 rotse3a schierd: closing focfd
Aug 12 21:15:00 rotse3a rotsed: daemon timeout (15.0098 > 15.00) exceeded, schierd
Aug 12 21:15:00 rotse3a rotsed: obtain status failed
...

83

84 CHAPTER 9. TROUBLESHOOTING

In this case, rotsed is reporting that schierd, which controls the mount, is having a problem. The lines
preceeding this timeout usually contain an error report from the daemon as it went down. In this case, the
key lines are:

Aug 12 21:14:50 rotse3a schierd: error bit 3 set on axis 0

Aug 12 21:14:53 rotse3a schierd: @RecentFaults Axis 1 High Output 8/12/2002, 20:19:36.277;

This particular error will be discussed in Section 9.5.3.
If you are having problems with the camera, refer to Section 9.4 for specific information on the camera log

file.

9.3 Help! The system won’t start!

This section is for startup problems in general. Each subsection describes a different common problem, how
to identify the problem, and how to fix it.

9.3.1 Problem: The system is already running

If startup fails, the following message might appear:

Aug 20 21:56:27 rotse3a rotsed: open(/rotse/run/cfg/rotsed.cfg, O WRONLY|O CREAT|O EXCL,
00664) failed, File exists

This is an indication that the rotsed.cfg file (which acts as a lockfile) is present. It is very possible that
the system is already running! If it is not, then check the following Section 9.3.2.

9.3.2 Problem: The system crashed and left a lockfile

If this is the problem, you might see the error message from the previous section, or you might see rmonitor
fail on startup with a comment such as:

error: failed to get shared memory

This means that the rotsed system is not running, but the lockfile is present, perhaps from a previous
system failure. The solution is simple: remove the lockfile with:

$ rm /rotse/run/cfg/rotsed.cfg

Then, you can safely restart the system.

9.3.3 Problem: A daemon configuration file has an error

A daemon will not finish initialization if its configuration file has an error, or has a missing field. The following
comment is typical:

Aug 27 11:30:54 rotse4 rotsed: error: thumbfile not set in config file

Aug 27 11:30:54 rotse4 rotsed: rotsed conf failed

First, the daemon (in this case, rotsed) reports which field has not been set (“thumbfile”). Then the
daemon reports that it’s configuration routine failed, and the system will shut down. To solve this problem,
please set the keyword in the proper configuration file.

Under normal running conditions the operator should not see this error, as configuration files are fairly
static over time. However, this error often pops up after a recent software update– in that case, a template
value should be available in the master configuration file in /rotse/etc/.

9.4. HELP! THE CAMERA ISN’T WORKING RIGHT! 85

9.3.4 Problem: A daemon hasn’t died properly from a previous run

Sometimes weathd or less frequently spotd get “stuck” on shutdown, and so a new system cannot start. The
way to check if this is the problem is with a ps call:

$ ps auxww | grep rotse
If old daemons show up in the process table, that’s the problem! Try the following:

$ killrotse -dammit
And if that doesn’t work, occasionally you just need to reboot the control computer.

9.3.5 Problem: A temporary problem with the i/o box

Sometimes clamd or spotd (and occasionally weathd) has trouble connecting to the i/o box (on ROTSE-IIIa).
This will result in a log message as the following:

Aug 12 21:36:17 rotse3a spotd: open of /dev/ml16pa-digital failed: No such device
...
Aug 6 23:21:09 rotse3a rotsed: daemon init timeout (10.0045 > 10.00) exceeded, clamd (or

spotd)
If this happens, wait at least 30 seconds and try to start the system again. It should work.

9.4 Help! The camera isn’t working right!

9.4.1 The camserverd logfile

Problems with the camera hardware, which is run by camserverd, need to be explored on the camera computer.
The system log on the camera computer is also called /var/log/rotse.log, and is very similar to the logfile
on the control computer. You should look in this logfile to debug any camera problems.

9.4.2 Problem: The image is saturated

If the image is completely saturated, or fails basic quality cuts (e.g., the minimum value in the central subframe
is above some cut-off, usually 30000), the system will only write the fits header to disk. In the logfile on the
camera computer you will see a message similar to:

Aug 21 01:07:16 cam3a camserverd: image screwed up, not writing it: 0
When you look at the image with ls, you will see:

-rw-rw-r-- 1 observer observer 8640 Aug 21 08:30 020817 sky1409+0148 3a001 c.fit
Reading the fits header will make the problem obvious: for this image, the mean in the central subframe

was 33035, very close to saturation.
The solution to this problem is simple: take a shorter exposure, or wait for clear weather!

9.4.3 Problem: The power supply has died

It can happen that the image will fail quality cuts, as mentioned in the previous Section 9.4.2, but the problem
might be more serious. When the camera is not getting proper power, there are two important diagnostics:

1. The camera temperature is not read out correctly, usually reverting to -280◦ C. Our cooling system,
however, obeys the laws of thermodynamics.

2. The MEAN in the central SUBFRAME is fixed at 32000, while the STDDEV is 0.0

3. The chip isn’t cooling at all, the temperature stays at 13.4◦ C, and you see lots of hot pixels.

86 CHAPTER 9. TROUBLESHOOTING

A likely problem is that one of the air filters on the camera power supplies has clogged up, and there is
insufficient airflow to cool the power supply. First, check which power supply is not running. (You need to
listen carefully to figure this out). Next, try to clear the air filters. If that works, great!, if not, please contact
the authors and Bob Leach at ARC cameras (leach@astro-cam.com) for information on resurrecting the power
supplies.

9.5 Help! The mount is having “issues”!

9.5.1 Problem: The mount control software is not running

It has happened that the mount control software (on the mount computer running Windows NT) is not run-
ning, or equivalently, the mount computer is not powered on. In this case, on startup you will see errors such as:

Aug 23 11:43:42 rotse3a schierd: No response to: $HaltRAe4a3M̂
This message means the mount computer did not respond at all to the command to halt the RA axis of

the mount. The solution is to reboot the mount computer, which cannot be done remotely.

9.5.2 Problem: The encoder is dirty or misaligned

If schierd is having problems, sometimes the error log has the following line:

Aug 11 16:40:49 rotse3a schierd: Error reported on RA Axis:
Aug 11 16:40:49 rotse3a schierd: @RecentFaults Axis 1 Encoder Failure 8/11/2002, 15:45:12.767;

What exactly does this mean? When confronted with the problem, Alan Schier quipped “Well, it sounds
like the Axis 1 encoder failed.” It should be noted that axis 1 is the RA axis, and axis 2 is the Dec axis.

There are two possible problems. There could be some dirt on the encoder tape, causing the encoder head
to lose track of the tape. The solution here is to clean the encoders as well as possible.

Alternatively, the encoder head could be slightly misaligned, so that the head loses contact with the tape
at a certain point. This misalignment might be very small, and the range over which contact is lost might be
very small as well. The solution is to very gently and carefully re-align the encoder head. This might take
some time (over an hour), but it is time well spent.

9.5.3 Problem: The balance is off or a cable is snagged

If schierd is having problems, the error log might have the following line:

Aug 12 21:14:53 rotse3a schierd: Error reported on RA Axis:
Aug 12 21:14:53 rotse3a schierd: @RecentFaults Axis 1 High Output 8/12/2002, 20:19:36.277;

In this case, the RA axis (axis 1) motor has tried pushing too hard. This is usually caused when the mount
is trying to track through a region where the balance is bad; the motor tries to keep the axis steady, and fails.
On telescope set-up, we should have a systematic check to ensure that the telescope can track through the
entire hemisphere.

It is also possible that there is a cable snag. After making adjustments to the mount, make sure that all
cables are securely locked away.

Appendix A

ROTSE-III File Naming Conventions

In order to convey useful information about ROTSE-III files at a glance, as well as to avoid the danger of
overwriting important files, we have implemented a standardized naming convention for all files in the data
analysis pipeline. These files are usually FITS format, and thus take the .fit extension at the end of the file
name. The name itself is broken into four parts, separated by underscore symbols:

[date] [tla][id numbers] [instrument designation][index number] [optional modifier].fit

The date is straightforward: a six-digit representation of the year, month, and day in that order: YYMMDD.
The other parts will be explained in the following sections, along with the standardized file system structure
for where they are located.

A.1 Three-Letter Acronyms (TLA)

Each type of imaging program that a ROTSE-III telescope might execute is identified through a three-letter
acronym (often called a TLA). These identify from the file name the reason a particular image was taken.
GRB responses have TLAs that identify the satellite that originated the alert, as well as the type of alert that
was disseminated. Sky patrol, burst follow-up, as well as various housekeeping observations all have their own
TLAs. The full list of standardized ROTSE-III TLAs is given in Table A.1. As described in Section 4.4.1, the
user must define his or her own TLAs through the astrod daemon for scheduled targeted observations.

A.2 Coordinates or ID Numbers

For prompt burst response images, the TLA is followed by an index number that identifies the GCN serial
number of the alert of that particular type (as identified by the TLA, see Section A.1). This number will
have at least four digits, but may have more. In the case of a simulated burst alert, the numbers will run
sequentially from a number that is determined by simGCNalert, one number for each alert. For real GCN
alerts, there is a unique number included in the packet array to identify the alert, and this number is passed
on to the file name by the DAQ system.

In contrast, for most other types of images, including sky patrol, targeted observations, and burst follow-
up images, the TLA is followed by a nine-digit field which gives the coordinates of the center of the field
to four-digit accuracy. The Right Ascention is given as HHMM, and the Declination is given by ±DDMM.
Fractional minutes are rounded to the nearest whole number.

Finally, dark images (drk) do not have coordinates. In this case, the four-digit identifying number following
the TLA is the exposure time in tenths of seconds.

A.3 Instrument Designation and Index Number

There is a two-digit code to identify the ROTSE instrument from which a given image originated. For ROTSE-
III, these digits will be either “3a”,“3b”,“3c”, or “3d”, depending on which of the four ROTSE-III telescopes

87

88 APPENDIX A. ROTSE-III FILE NAMING CONVENTIONS

TLA Explanation
drk Dark Image
foc Focus Image
hom Home Check
twi For making a Twilight Flat
tpt For making a Pointing Model
pht Photometry Verification after Burst Response
tla Test alert
gha HETE-2 alert
ghu HETE-2 Update alert
ghf Final HETE-2 alert
ghg Alert from HETE-2 Ground Analysis
gbb Alert from BeppoSAX WFC
gbn Alert from BeppoSAX NFI
sky Sky Patrol
fup Burst Follow-Up

Table A.1: ROTSE-III standard three-letter acronyms to indicate the reason for why a particular image was
recorded. Additional TLAs are defined by the user for targeted observation sequences.

Modifier File type
c Corrected Image Files
sobj Object lists output from SExtractor
cobj Calibrated object lists
cal Calibration data (obsolete – now included in cobj file)
sky Average sky background (also in cobj file)
match Match structures
relmat Relative Photometry-corrected match structures

Table A.2: Optional file modifiers for ROTSE-III data products.

is appropriate. The choice is specified in the camerad.conf file (Section 3.5). If more ROTSE-III telescopes
are implemented, the extension of the sequence is obvious.

The index number simply distinguishes between images taken on the same day, for the same reason, of
the same field, and with the same telescope. This number increments with each image taken as part of a
given imaging sequence (Section 4.4.1) in response to a given command. For sky patrol images, the number
increases with each image taken of a particular field on a particular night. For burst alerts, this is simply a
chronological numbering of all images taken in response to the same alert.

The median dark images described in Section 7.2.2 do not have index numbers after the instrument desig-
nation, but the individual images that make up a dark run will be ordered in the sequence in which they were
taken.

A.4 Optional Modifiers

As each image is processed by the data analysis, modifier strings are appended to the basic file name to
distinguish each stage in the process while still conveying the file’s origin in a particular image. These
modifiers are summarized in Table A.2, and the details are explained in the description of the analysis software
in Chapter 8.

A.5. MATCH STRUCTURES 89

Directory or File Path Description of Contents
/rotse/run/bin/ Directory with Binary Files
/rotse/run/etc/ Directory with Configuration Files
/rotse/run/cfg/ Directory with rotsed lockfile
/rotse/run/log/ Directory with daemon logfiles
/var/log/rotse.log ROTSE logfile

Table A.3: Standard definitions for the locations of ROTSE-III system files.

Directory Path Description of Contents
/rotse/data/3a1/ Directory with non-alert image files
/rotse/data/3a1/links/ Directory with links to raw image files
/rotse/data/3a2/ Directory with alert image files
/rotse/data/pipeline/ Automated Pipeline Parent Directory

Table A.4: Standard definitions for the locations of ROTSE-III data products. The letters “3a” should be
replaced with the appropriate two-letter designation for the telescope in question, see Section A.3.

A.5 Match Structures

Since match structures (Section 8.3.2) will contain data from many images, potentially on different dates,
match structure file names will not contain either the date field or the index number. The rest of the name
(such as “ghu0003 3a” or “sky0350–0148 3a”) is called the “root” name, and so the match structure file will
be named either “ghu0003 3a match.fit” or “ghu0003 3a relmat.fit”, depending on whether or not the relative
photometry procedure (Section 8.3.3) has been applied to it.

A.6 Standard Data Directory Structure

On each telescope control computer, programs, configuration files and data products are put in standard places
so that they can be easily accessed. The locations of the files necessary for telescope operations are described
in Table A.3. Image data are placed on different discs, and these directories are described in Table A.4. The
first two directories are on the camera computer, and the third is on the control/analysis computer. The
directories on the camera computer contain the raw images as recorded from the camera via camserverd. The
images are not separated into subdirectories, and the only standard subdirectory is called links in 3a1, which
contains the symbolic links which are processed by sexpacman.

Within the pipeline directory identified in Table A.4 are several important standard directories and
data files. These files are summarized in Table A.5 and are described here in more detail. The pipeline
directory contains six subdirectories: image, which contains all the corrected images, prod, which contains
the sobj and cobj files (as well as a directory match for any archived match structures), html for the WWW-
formatted output from idlpacman’s burst response, cal, which contains dark and flat field files and anything
else needed for calibration, thumbs, which contains the thumbnail JPEG images produced by sexpacman.pl,
and transfer, which will be used hold files intended for transfer back to Michigan. The pipeline directory
also contains the configuration and log files used for sexpacman and idlpacman, as described in Sections 2.3.3,
8.2.1, and 8.2.2.

90 APPENDIX A. ROTSE-III FILE NAMING CONVENTIONS

Directory or File Description of Contents
image Directory for corrected image files
prod Directory for cobj and sobj files
prod/match Directory for match structure files
html Directory for burst response products to view
cal Directory for dark, flat, and fringe field files
thumbs Directory for JPEG thumbnails
transfer Directory for things to transfer to UofM
sex.conf Configuration file for sexpacman.pl
sex.log Log file for sexpacman.pl
sobjlist Output list of sobj files created by sexpacman.pl
idlpac.conf Configuration file for idlpacman.pro
idlpac.log Log file for idlpacman.pro

Table A.5: Standard products to be located within the pipeline directory identified in Table A.4.

Appendix B

FITS File Information

B.1 FITS File Description

The Flexible Image Transport System (FITS) format was created by NASA and is the standard format
for images and data structures in the astronomical community. More information can be found online at
fits.gsfc.nasa.gov.

A FITS file contains an unlimited number of extensions, each of which can contain image data or binary
tabulated data. Each extension has a meta-data “header” that describes the data format for that extension.
The FITS file itself contains a primary header that can contain several standard keywords, as well as unlimited
user-definable keywords. The ROTSE-III keywords are described in Section C.1 and C.2. The FITS format
is, as the name suggests, extremely flexible.

The primary extension (number 0) can only contain an image, and cannot contain an arbitrary data
structure. Each additional extension can contain either image data or binary tabulated data. None of the
ROTSE-III FITS files contains image data beyond extension 0. The FITS standard also allows for simple image
compression from 32-bit floating point values to 16-bit integer values using simple scaling. The standard header
keywords BZERO and BSCALE are used to compress and uncompress an image in the following way:

Compress: Integer Value = (Float Value - BZERO) / BSCALE
Uncompress: Float Value = (Integer Value) * BSCALE + BZERO

FITS images conform to the World Coordinate System (WCS) standard. With WCS information in the
image header, an image viewer is able to translate x and y coordinate values to RA and Dec. Currently, we
only have a simple WCS rotation matrix implemented, so the RA and Dec positions are only approximate.
Extensions to WCS for a more refined transformation exist, but have not yet been implemented in our analysis
code.

The IRAF program suite contains many tools for working with FITS images. For various reasons, we do
not use the IRAF suite. Many of our basic image processing tools (makedark and makeflat for example) are
based on Stuart Marshall’s “miraf” code. For other functions, we have our own pipeline code that runs much
faster in C and IDL.

B.2 Accessing FITS Files: Command Line

B.2.1 Primary FITS Headers: mhead

To access the fits header, Stuart Marshall’s mhead program is simple to use, and prints the entire header to
the terminal. Combining mhead with grep returns a given keyword line.

$ mhead imagefile.fit
SIMPLE = T / file does conform to FITS standard
...

91

92 APPENDIX B. FITS FILE INFORMATION

$ mhead imagefile.fit | grep FOCUS
FOCUS = 3.29648 / Focus position (mm)
$

B.2.2 Image Data: ds9

For FITS image viewing, there are many choices out there. We use ds91 as it combines flexible features
with a lightweight package. The program gaia has more analysis features (notably point-and-click FWHM
estimates), but is much slower, so is inconvenient for day-to-day use. To use ds9, simply call it from the
command line. ds9 is fully compliant with the WCS standard.

B.2.3 Binary Structure Data

There are command line tools to view FITS binary tables, but we don’t have them installed. For these
structures, using IDL is quite useful.

B.3 Accessing FITS Files: IDL

FITS file access from IDL is accomplished with the IDL astronomy users library. Detailed documentation can
be found on the web at idlastro.gsfc.nasa.gov/contents.html.

B.3.1 Primary FITS Headers: headfits.pro

The primary FITS header can be accessed with the headfits.pro function. Individual keywords can be
accessed with sxpar.pro as below:

IDL> hdr=headfits(’filename.fit’)
IDL> print,hdr
SIMPLE = T / file does conform to FITS standard
...
IDL> focus = sxpar(hdr,’FOCUS’,count=count) ;count returns 0 if the keyword is not found
IDL>

B.3.2 Image Data: readfits.pro

The primary image extension is accessed with the readfits.pro function. This function automatically scales
the raw pixel values with the FITS standard BZERO and BSCALE parameters. Image display is accomplished
with the rdis setup.pro and rdis.pro routines.

IDL> im=readfits(’filename.fit’,hdr) ;the hdr (header) argument is optional.
IDL> rdis setup,im,pls ; set up the rdis plot structure
IDL> rdis,im,pls ; plot the image with hist. eq.

B.3.3 Binary Data: mrdfits.pro

The secondary binary structure extensions are accessed with mrdfits.pro. Please note that mrdfits does
not properly use BZERO and BSCALE, and should not be used to read in image data! The binary structures
come out exactly as they were written, with the same structure tags.

IDL> cobj=mrdfits(’cobjfile.fit’,1) ;The 1 signifies the 1st extension
MRDFITS: Binary table. 7 columns by 4323 rows.
IDL> help,cobj,/str

1SAOimage ds9 is the third SAOimage viewer. The first was called saoimage, and the second tng. I am not sure if Voyager or
Enterprise is the next version...

B.4. ACCESSING FITS FILES: C 93

RA FLOAT 21.6110
...
IDL>

B.4 Accessing FITS Files: C

Accessing FITS files from C is accomplished in the ROTSE daq system with the cfitsio C library. We are
currently running version 2.0, although many more features are now available. For detailed information visit
the website at heasarc.gsfc.nasa.gov/fitsio/.

94 APPENDIX B. FITS FILE INFORMATION

Appendix C

ROTSE-III Data Products

C.1 Raw Images

The raw images contain a two-dimensional array of 16-bit unsigned integers that characterize the photon
flux at each pixel on the CCD chip. The image is located at the primary FITS extension, as described in
Section B.1. Each FITS image has FITS header that contains both standard keywords and ROTSE specific
keywords. The header values are listed below, with a few fields left blank to be filled in when the image is
corrected. These values are described in Section C.2.

BITPIX number of bits per data pixel
NAXIS number of data axes
NAXIS1 length of data axis 1
NAXIS2 length of data axis 2
EXTEND FITS file may contain extensions
BZERO offset data range
BSCALE default scaling factor
OFFSET1 Camera upper left frame x
OFFSET2 Camera upper left frame y
XFACTOR Camera x binning factor
YFACTOR Camera y binning factor
DATE-OBS Date of start of OBS in GMT
LOCTIME Exposure local start time
MJD Julian Date -- 2400000.5
OBSTIME Start Time of OBS in GMT (sod)
ALTITUDE Observatory altitude (meters)
LATITUDE Observatory latitude (deg)
LONGITUD Observatory longitude (deg)
NCOADD Number of co-added images
CTYPE1 RA, TAN projection used
CRPIX1 pixel at reference point
CRVAL1 RA at the reference point
CDELT1 increment per pixel (degrees)
CUNIT1 physical units of axis 1
CTYPE2 DEC, TAN projection used
CRPIX2 pixel at reference point
CRVAL2 DEC at the reference point
CDELT2 increment per pixel (degrees)
CUNIT2 physical units of axis 2
PC001001 coordinate rotation matrix (WCS)
PC002002 coordinate rotation matrix

PC001002 coordinate rotation matrix
PC002001 coordinate rotation matrix
CAM ID Two-digit ID tag for instrument
OFFSTRA Camera offset in RA (deg*cos(dec))
OFFSTDEC Camera offset in Dec (deg)
OPTICS Optics manufacturer and model
OPTICSN Optics serial number
FOCUS Focus position (mm)
SATCNTS Saturation Level
NSAT Number of Saturated Pixels
ENCRA Encoder RA
ENCDEC Encoder Dec
CAMTYPE Camera manufacturer and model
CAMSN Camera serial number
CARDSN PC card serial number
PATH Path name of FITS file
FILENAME FITS file name
NFRAME Frame number
EXPTIME Exposure time, seconds
EFFTIME Eff. co-added time, seconds
COOLER TE cooler status
CAMTEMP Camera temperature (C)
AMP 0:Left, 1:Right, 2:Both
MEAN Mean of SUBFRAME
STDDEV Std dev. of SUBFRAME
MEDIAN Median of SUBFRAME
MIN Minimum pixel value of SUBFRAME
MAX Maximum pixel value of SUBFRAME
SUBFRAME SBF bounds (xmin:xmax,ymin:ymax)
BMEAN Mean of BIASFRAME
BSTDDEV Std dev. of BIASFRAME

95

96 APPENDIX C. ROTSE-III DATA PRODUCTS

BMEDIAN Median of BIASFRAME
BMIN Minimum pixel value of BIASFRAME
BMAX Maximum pixel value of BIASFRAME
BIASFRAM BSF bounds (xmin:xmax,ymin:ymax)
OBSTYPE Observation type
TRIG NUM Trigger number
TRIG T Trigger time (sec-of-day)
PKT T Time trigger sent (sec-of-day)
TRIG RA Trigger RA (deg)
TRIG DEC Trigger Dec (deg)
TRIG ERR Trigger Error (deg)
INTEN Trigger intensity
LPHASE Lunar Phase (= -1.0 when down)
DMOON Ang. distance to Moon (deg)
ELEV Elevation (deg)
AZIMUTH Azimuth (deg)

NEARTILE Four nearest Sky Patrol frames
MOUNT Mount manufacturer and model
MOUNTSN Mount serial number
MOUNTRA Right Ascension J2000 (deg)
MOUNTDEC Declination J2000 (deg)
MOUNTERR Mount position error (deg)
TEMPOUT Outside temperature (F)
WINDSPD Wind speed (mph)
WINDDIR Wind direction (deg)
BAROM Barometric pressure (inches Hg)
HUMIDITY Outside humidity (%)
DEWPOINT Dew point (F)
SKYMON Sky Monitor voltage
CLOUDS Cloud Monitor voltage
VPRECIP Vaisala Precipitation voltage

C.2 Corrected Images

After applying the dark, flat, and fringe field corrections, a final image is written with an “ c” naming extension
(Section A.4) in a samilar FITS format as the raw images. The corrected images contain 32-bit floating point
values compressed to 16-bit integers using the BZERO/BSCALE method described in Section B.1. The header
keywords are the same as the raw image files, only the following keywords are now be filled in:

DARKNAME Dark File name
FLATNAME Flat File name
FRINGE Fringe File name
FSCALE Fringe Scaling
FCHISQ Fringe Chisq

If the fringe fit was not good, as described in Section 7.5, an exclamation point (“!”) is placed before the
fringe file name to indicate it was not subtracted.

C.3 sobj Files

This kind of FITS file is output from SExtractor as described in Section 8.2.1. An sobj file consists of a
primary header and an array of structures. The latter is saved as the first FITS extension. Use the IDL
program mrdfits(’sobjname.fit’,1) as described in Section B.3 to access the object list. The primary
header consists of the FITS standard keywords, and the following additional keywords:

HISTORY
EPOCH
OBJECT
ORIGIN
SEXIMASX IMAGE WIDTH (PIXELS)
SEXIMASY IMAGE HEIGHT (PIXELS)
SEXSTRSY STRIP HEIGHT (LINES)
SEXIMABP FITS IMAGE BITPIX
SEXPIXS PIXEL SCALE (ARCSEC)
SEXSFWHM SEEING FWHM (ARCSEC)
SEXNNWF CLASSIFICATION NNW FILENAME
SEXGAIN GAIN (IN E- PER ADU)
SEXBKGND MEDIAN BACKGROUND (ADU)

SEXBKDEV MEDIAN RMS (ADU)
SEXBKTHD EXTRACTION THRESHOLD (ADU)
SEXCONFF CONFIGURATION FILENAME
SEXDETT DETECTION TYPE
SEXTHLDT THRESHOLD TYPE
SEXTHLD THRESHOLD
SEXMINAR EXTRACTION MINIMUM AREA (PIXELS)
SEXCONV CONVOLUTION FLAG
SEXCONVN CONVOLUTION NORM. FLAG
SEXCONVF CONVOLUTION FILENAME
SEXDBLDN NUMBER OF SUB-THRESHOLDS
SEXDBLDC CONTRAST PARAMETER
SEXCLN CLEANING FLAG

C.4. COBJ FILES 97

Bit value Tag Name Meaning
1 NEIGHBORS Not used with MAG APER
2 BLENDED Object was originally blended with another one.
4 SATURATED At least one pixel of the object is saturated.
8 ATEDGE The object is truncated (too close to an image boundary).
16 APINCOMPL Object’s aperture data are imcomplete or corrupted.
32 ISINCOMPL Object’s isophotal data are incomplete or corrupted.
64 DBMEMOVR Memory overflow occured during deblending.
128 EXMEMOVR Memory overflow occured during extraction.

Table C.1: Possible values for the FLAGS bitmask field in the raw object list structures.

SEXCLNPA CLEANING PARAMETER
SEXCLNST CLEANING OBJECT-STACK
SEXAPERD APERTURE DIAMETER (PIXELS)
SEXAPEK1 KRON PARAMETER
SEXAPEK2 KRON ANALYSIS RADIUS
SEXAPEK3 KRON MINIMUM RADIUS
SEXSATLV SATURATION LEVEL (ADU)
SEXMGZPT MAGNITUDE ZERO-POINT
SEXMGGAM MAGNITUDE GAMMA
SEXBKGSX BACKGROUND MESH WIDTH (PIXELS)
SEXBKGSY BACKGROUND MESH HEIGHT (PIXELS)

SEXBKGFX BACKGROUND FILTER WIDTH
SEXBKGFY BACKGROUND FILTER HEIGHT
SEXPBKGT PHOTOM BACKGROUND TYPE
SEXPBKGS LOCAL AREA THICKNESS (PIXELS)
SEXPIXSK PIXEL STACKSIZE (PIXELS)
SEXFBUFS FRAME-BUFFER SIZE (LINES)
SEXISAPR ISO-APER RATIO
SEXNDET NB OF DETECTIONS
SEXNFIN NB OF FINAL EXTRACTED OBJECTS
SEXNPARA NB OF PARAMETERS PER OBJECT

The object list consists of an array of structures: one element for each object. A single structure in this
array has the following fields:

NUMBER Object number
MAG APER Aperture Magnitude
MAGERR APER Uncertainty in same
BACKGROUND Local Background (ADU)
FLUX MAX Peak Object Flux (ADU)
MU MAX ??

ISOAREA IMAGE Isophotal Area of Object
X IMAGE X-coordinate of object (FITS Coord + 1)
Y IMAGE Y-coordinate of object (FITS Coord + 1)
FWHM IMAGE Measuring the PSF
FLAGS Bitmask of SExtractor flags

The FLAGS values are described in the SExtractor documentation and are summarized in Table C.1.

C.4 cobj Files

Once the object list has been calibrated against the USNO A2.0 catalog, we are in a position to know how to
map the image coordinates to the sky, and we can fill in all of the image file headers. The following fields now
have meaningful values that define a (very rough) WCS rotation matrix to perform this conversion: PC001001,
PC002002, PC001002, and PC002001. These numbers are used by ds9 to calculate world coordinate system
units for display, but are not accurate enough for real analysis.

A cobj FITS file has a primary header and two data extensions. The primary header is taken directly from
the corrected image. The first data extension contains the calibrated object list. The second data extension
contains the “calibration structure,” or “cal” structure.

The calibrated object list at extension 1 is an array of structures, one element per object, each element of
which contains the following fields:

RA Right Ascention (deg)
DEC Declination (deg)
X Horizontal Pixel coordinate

Y Verticle Pixel coordinate
M Calibrated magnitude
MERR Uncertainty in above

98 APPENDIX C. ROTSE-III DATA PRODUCTS

Bit value Tag Name Meaning
1 HOTPIX Object falls on hot pixel in this observation
2 USNOCAT Object is present in USNO Catalog
4 ASTEROID Object is most likely an asteroid
8 BADPOS Position centroid for this observation is too far from mean position
16 NOTEMPL Relphot subframe failed to identify sufficient template objects
32 PHOTSDEV Relphot subframe RMS correction is large
64 BADIMAGE A catch-all image-wide problem flag

Table C.2: Possible values for the RFLAGS bitmask field in the calibrated object list structures.

FLAGS Same as in sobj file
RFLAGS Additional ROTSE flags (See Table C.2)

The cal structure at extension 2 contains a single structure with much information. The bulk of the
cal structure consists of the corrected image header keywords converted from ASCII to a binary structure.
In addition are several important keywords from the sobj header. Finally are calibration diagnostic values
described here:

BADPIXFILE The name of the bad pixel file
NMATCH The number of matched objects
OFFSET X
OFFSET Y
POS SIGMA The RMS error in position
RA LOW Image range on sky
RA HIGH
DEC LOW
DEC HIGH
ZP OFFSET Magnitude offset
ZP SIGMA Uncertainty in offset

M LIM Limiting magnitude
FNAME Name of file
RAC Coordinate of center
DECC
KX Third order rotation matrix
KY to convert coords
SAT MAG Saturation magnitude
NOBJ BADPIX Objects that fall on bad pixels
SKY 64×64 array for sky bkgd

C.5 Match Structures

A match structure FITS file consists of two extensions. There is no useful information in the header. The
second FITS extension is simply an array of all the cal structures that were stored in the second extensions of
the cobj files that went into creating the match structure.

The first FITS extension contains the match structure itself, which is an array of structures, one element
for each object in the calibrated object lists that compose the match structure. The fields in each structure
are defined in Table C.3, where nobj is the number of objects in the structure, and nobs is the number of
observations included in the match.

C.5. MATCH STRUCTURES 99

Field Name Datatype Format Contents
KX FLOAT Array[nobs, 4, 4] Coordinate Conversion Matrix
KY FLOAT Array[nobs, 4, 4] Same
JD DOUBLE Array[nobs] Date in Modified Julian Day

EXPTIME FLOAT Array[nobs] Exposure Time
IMAGENAME STRING Array[nobs] Image file name

RAC FLOAT Array[nobs] Center of image
DECC FLOAT Array[nobs] Center of image
RAL FLOAT Image limits
RAH FLOAT
DECL FLOAT
DECH FLOAT

M FLOAT Array[nobs, nobj] Object magnitude
MERR FLOAT Array[nobs, nobj] Uncertainty in M from SExtractor
FLAGS INT Array[nobs, nobj] SExtractor flags
DRA LONG Array[nobs, nobj] Observation Position * 1000000

DDEC LONG Array[nobs, nobj] Same
RFLAGS BYTE Array[nobs, nobj] ROTSE flags
MSYS BYTE Array[nobs, nobj] Systematic Error Estimate
RA DOUBLE Array[nobj] Mean location of object (deg)

DEC DOUBLE Array[nobj] Same (deg)
NUMOBS INT Array[nobj] # of obs in which object was in FOV
CONSEC BYTE Array[nobj] Was object in consecutive obs?
NGOOD INT Array[nobj] # of good obs in which obj was detected
MAVG FLOAT Array[nobj] Mean magnitude of each object
MSTD FLOAT Array[nobj] RMS scatter in M for each object
M LIM FLOAT Array[nobs] Limiting magnitude of each obs

Table C.3: Fields that go into a ROTSE-III match structure. Values that vary for every object in each field,
such as magnitude, are two-dimensional arrays, while values that only vary from observation to observation,
such as the average magnitude, are one-dimensional arrays. The overall limits on the R.A. and Decl. coordi-
nates are four floating point numbers. The variables nobs and nobj refer to the number of observations and
the number of objects, respectively, contained in the match structure

100 APPENDIX C. ROTSE-III DATA PRODUCTS

C.6 Relative Photometry-Corrected Match Structures

A match structure upon which the relative photometry algorithm (Section 8.3.3) has been applied still contains
the exact same structure as the original match structure (although some of the data values in that structure
have been changed, of course). What is new is a third FITS file extension has been added, to preserve useful
information about the correction process. This third extension is a single structure with the following fields:

NPIX Number of sub-fields used
NXBIN
NYBIN
NTHR
NOISE

OFFSET Array of mean offsets per subfield
ERROR
NTMP
SDV

Index

/var/log/rotse.log, 15

alert commands, 21
alertd, 12, 27
astrod, 12, 28, 37, 55, 87
auto mode, 13, 19

burst follow-up, 87

calibration frames, 61
camera commands, 20
camerad, 11, 28
camserverd, 11, 30, 72, 89
cfitsio, 93
clamd, 10, 19, 31
cobj to tp.pro, 52
corr im fast, 68, 72, 76

dark images, 61
Davis Weather Station, 12, 34
ds9, 48, 62, 92, 97

ee, 57

find focus3.pro, 33, 58
flat fields, 62
focus commands, 20
focus gradient, 56
focus model, 55, 57
focus run, 55, 57
focus gifs.pro, 57
follow-up observations, 12, 39, 40, 44
fringe map, 66
fringing, 67, 96

GCN, 12, 27, 78, 79, 87

headfits.pro, 92
HETE-2, 28, 41, 81

idl, 72, 78
IDL astronomy library, 92
idlpacman, 16, 72, 89

killrotse, 16

Landolt standard stars, 40

makedark, 61, 62, 91
makeflat, 64, 91
manual mode, 13, 19
match structures, 76, 89
mhead, 91
mount commands, 19
mrdfits.pro, 92

naming conventions, 87
new dfc, 68

observer, 16

pacman, 71
pointing model, 21, 48, 49, 51
polar alignment, 47, 49
prompt burst observations, 12

rdis.pro, 92
readfits.pro, 92
regmatch3 list.pro, 77
relative photometry, 78, 100
relphot3.pro, 78
rmonitor, 21
rotsed, 9, 16, 26, 37
rotsepager, 78
rush, 13, 16, 17

Scheduling observations, 44
schierd, 11, 31, 51
sexpacman, 11, 16, 31, 72, 89
SExtractor, 56, 71, 72, 76, 96
SIG HUP, 10, 37
SIG KILL, 10, 16
SIG ROTSE, 10, 12, 13
SIG TERM, 9, 16
skeld, 25
sky flats, 64
sky patrol, 12, 37–39, 87
spotd, 11, 33
standby, 13
startidlpac, 72
startsexpac, 72
sxpar.pro, 92
system files, 15
system status, 17

101

102 INDEX

targets, 12
telescope pole offset, 48
TelRad, 47
tla, 87
Tpoint, 21, 32, 49–52
trigger, 40
twilight flats, 62
two-star matrix, 48
two-star pointing, 48
twostartp.pro, 49

uncorrect, 69
Univeristy of Michigan, 79
update match.pro, 77
user sched.pl, 44
userd, 13, 34

Vaisala Precipitation Detector, 12, 34, 96

weathd, 12, 34
web based status, 9
www.rotse.net, 26, 72

	ROTSE-III Data Acquisition System
	Introduction
	The Daemons

	How To Run the ROTSE-III System
	Introduction
	System Files
	Starting the System
	Shutting Down the ROTSE System
	The Rotse User Shell: rush
	True Realtime Status Monitoring with rmonitor

	The ROTSE-III Configuration Files
	General Configuration File Information
	rotsed.conf
	alertd.conf
	astrod.conf
	camerad.conf
	camserverd.conf
	clamd.conf
	schierd.conf
	spotd.conf
	userd.conf
	weathd.conf

	Rotse-III Scheduling
	Introduction
	astrod and rotsed
	astrod.conf
	Triggers and Schedules
	burst.conf
	Guest User Schedule Submission

	Polar Alignment and Pointing Models
	Introduction
	Polar Alignment
	Using Tpoint
	Refining the Pointing Model
	Tpoint Formulas

	Building A Better Focus Model
	Introduction
	The Focus Model
	Manually Monitoring the Focus Gradient
	Setting Up an Automated Focus Run
	Constructing a Focus Model

	Image Correction and Calibration Images
	Introduction
	Dark Images
	Flat Fields
	Updating the Automated Pipeline Files
	Performing Image Correction: corr_im_fast and new_dfc
	Uncorrecting Images: uncorrect

	Realtime Data Analysis and Monitoring Telescope Operations
	Introduction
	Realtime Automated Analysis
	Manual Data Analysis
	Operational Status and Monitoring

	Troubleshooting
	Introduction
	Tips and Tricks
	Help! The system won't start!
	Help! The camera isn't working right!
	Help! The mount is having ``issues''!

	ROTSE-III File Naming Conventions
	Three-Letter Acronyms (TLA)
	Coordinates or ID Numbers
	Instrument Designation and Index Number
	Optional Modifiers
	Match Structures
	Standard Data Directory Structure

	FITS File Information
	FITS File Description
	Accessing FITS Files: Command Line
	Accessing FITS Files: IDL
	Accessing FITS Files: C

	ROTSE-III Data Products
	Raw Images
	Corrected Images
	sobj Files
	cobj Files
	Match Structures
	Relative Photometry-Corrected Match Structures

